PTYS Graduate Core Course. Introductory physics of planetary and interplanetary gases, fluids and plasmas. Thermodynamics, kinetic theory, plasma physics, hydrodynamics, and magnetohydrodynamics with solar-system applications. This includes planetary atmospheres, turbulence, solar wind, solar-system magnetic fields, dynamo theory, and planetary magnetospheres. Students will be expected to be familiar with vector calculus and both ordinary and partial differential equations. In addition, students will be expected to know, or learn, a programming language such as C, Fortran, IDL or MATLAB. Course requisites: Classical and quantum mechanics at the level of PHYS 151 and PHYS 242. Sample course syllabus, Giacalone (PDF). Sample course syllabus, Klein (PDF).
Fall 2026 Graduate Courses
Click on course number within each window for information about sections, syllabi, etc.
Core Course
Principles of Planetary Physics (3)
Core Course
Planetary Global Tectonics (3)
PTYS Graduate Core Course. Application of the physics of solid-state deformation to global tectonics of the terrestrial planets and icy moons of the solar system. Modes of topographic support, isostasy and implications for gravity/topography ratios on one-plate planets. Theory of floating elastic plates as an approximation to the lithosphere. Use of seismic data to determine the interior structure and composition and modes of heat conduction in planets.
Sample course syllabus, Andrews-Hanna (PDF)
Asteroids, Comets and Kuiper Belt Objects (3)
This is an introduction to the "minor planets," the asteroids, comets and Kuiper Belt objects. The focus will be on origin and evolution (including current evolution), as well as techniques of study. It will include an evening at the telescope of an asteroid search program. Graduate-level requirement includes some original work or calculations in the paper/project submitted and to research one of the primary topics and lead the class discussion of it. May be co-convened with PTYS 416.
Physics of High Atmospheres (3)
Physical properties of upper atmospheres, including gaseous composition, temperature and density, ozonosphere, and ionospheres, with emphasis on chemical transformations and eddy transport. Identical to ATMO 544. PTYS is home department.
Remote Sensing of Planetary Surfaces (4)
This graduate course will focus on the use of remote sensing in the study of rocky and icy planetary surfaces. It is not a science course, but rather intends to provide technical knowledge of how instruments work and practical techniques to deal with their datasets. In this course, we will cover how different types of remote-sensing instruments work in theory and practice along with case studies (student-led) of specific planetary science instruments. We will discuss what datasets are generated by these instruments, their limitations and where they can be located. Lab sessions will provide experience in how these data are processed, visualized and intercompared. The class consists of two lectures and a 2.5-hour lab session each week. Cross-listed with GEOS, equivalent to GEOS 551.
Planetary Astrobiology (3)
This course will explore the processes related to planet formation, the properties of planets and the planetary conditions required for the emergence of life. We will study the formation of our Solar System and exoplanetary systems, the distribution and properties of exoplanets, and the potential habitability of other planets/moons in our system or extrasolar systems. The course will also review science cases and possible future astrobiology studies, both in site and via remote sensing, of astrobiologically relevant environments. Toward the end of the semester a few guest lectures will highlight particularly exciting and timely topics. This course is identical to ASTR 575; may be co-convened with ASTR 475. ASTR is home department.
Planetary Geology Field Studies (1)
The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit. Trip is led by a Planetary Sciences faculty member once per semester. Alternative grading (SPF).