:

Use the Law of Sines:
 r+z

sin 90°
=  r

sin y
sin y
=  r

r+z
y
= 63.° 464

Find range of limb. Use the Pythagorean Theorum:


(r+z)2
= L2 + r2
L2
= (r+z)2 - r2
= 2xr + z2
L
=
Ö
 

2zr + z2
 
L
= 1696.536  km

Calculate the angle q, the number of degrees around planet to limb:


y+ q
= 90°
q
= 90° - y
q
= 26.° 536

: When do we lose 100% coverage of Olympus Mons?



This occurs when the far slope becomes co-linear with the line-of-sight from the spacecraft. We assume, for Olympus Mons, a slope s = 20°, a height h = 20 km, and that the basal diameter (110 km) is small compared to the radius of Mars, r = 3397 km. The nominal spacecraft altitude is z = 400 km.

Using the Law of Sines:
 r+z

sin (90° + s)
=  r+h

sin n
sin n
= æ
è
 r+h

r+z
ö
ø
cos s
n
= sin-1  é
ë
æ
è
 r+h

r+z
ö
ø
cos s ù
û
n
= 57.° 742,     (which is  < yas it should be.)

Calculate the angle f, the number of degrees around planet to the summit of Olympus. The sum of the angles of a triangle is 180°:


180°
= 90° + s + n + f
f
= 90° - s - n
f
= 12.° 258     and    q-f = 14.° 278

Find range of the summit from spacecraft. Again use the Law of Sines:


 l

sin f
=  r+h

sin n
l
= æ
è
 r+h

sin n
ö
ø
sin f
l
= 857.925  km

: When does Olympus Mons peek above the limb?



This occurs when the summit becomes co-linear with the line-of-sight from the spacecraft, it .e., when the nadir angle of the summit equals y. This calculation is easy, since all our triangles are right triangles:


l2
= (r+h)2 - r2
l
=
Ö
 

2rh+h2
 
l
= 369.161  km
So the total range is L2:
L2
= L + l
L2
= 1696.349 + 369.161  km
L2
= 2069.510  km

For the angle around the planet when this occurs, use Law of Sines:


 l

sin q¢
=  r+h

sin 90°
sin q¢
=  l

r+h
q¢
= 6.° 202
and the total   q+q¢
= 37.° 738



End.

-RLM 12 December 2001

.tex




File translated from TEX by TTH, version 3.10.
On 30 May 2002, 15:39.