Exploring Our Solar System (3)
Our Solar System is filled with an incredible diversity of objects. These include the sun and planets, of course, but also many hundreds of moons—some with exotic oceans, erupting volcanoes, or dynamic atmospheres. Billions of asteroids and comets inhabit the space between and beyond the planets. Each body is unique, and has followed its own evolutionary history. This class will explore our current understanding of the Solar System and emphasize similarities that unite the different bodies as well as the differences between them. We will develop an understanding of physical processes that occur on these bodies, including tectonics, impact cratering, volcanism, and processes operating in their interiors, oceans, and atmospheres. We will also discuss planets around nearby stars and the potential for life beyond Earth. Throughout the class, we will highlight the leading role that the University of Arizona has played in exploring our Solar System.
Course Objectives: Students who engage with this course will develop a broad understanding of many fundamental concepts in planetary science and gain an appreciation for the discoveries and reasoning that leads to this understanding. They will learn to collect their own data as well as gather relevant supporting information from a variety of outside sources. Throughout the semester students will be demonstrating their grasp of course material by composing written assignments at a level their peers outside of the class will understand (a.k.a., Students on the Street, or SOS). During the term project students will be assisted in working with telescopes to obtain astronomical images using their own smart phone cameras. Students will learn during in-class workshops how to use their own images to then construct a time-lapse animation. Expected Learning Outcomes: Upon successful completion of this course students will be able to (1) access and use information and data from a variety of sources, including their own activities, (2) critically evaluate this information and data for reliability in supporting fundamental concepts, (3) effectively communicate an understanding of these concepts to their SOS peers by synthesizing the information and data they have gathered, (4) demonstrate practical skills with a variety of software, including Word, Excel, Keynote, PowerPoint, and image/video editing apps.
The Science and Politics of Climate Change (3)
This course explores the science of climate change and the political and commercial issues related to global warming. The first part of the course focuses on the scientific basis of climate change. Students will investigate the concepts and principles required for understanding planetary climates. They will assess the observational evidence for climate change and quantify the relative roles of natural and human drivers in causing it. They will connect and compare recent changes to historical climate trends and examine predictions for the impact of future climate change on the environment and our lives. The second part of the course focuses on the political and commercial issues related to climate change mitigation. Students will analyze policies designed to reduce greenhouse gas emissions and explore their impacts from the perspectives of policymakers, commercial interests and the public.
Life in the Cosmos (3)
This course explores key questions in astrobiology and planetary science about the origin and evolution of life on Earth and the possibility that such phenomena have arisen elsewhere in the Universe. We examine what it means for a planet to be alive at scales ranging from cellular processes up to global impacts of biological activity. We survey international space-exploration activities to search for life within the Solar System, throughout our Galaxy, and beyond.
Planetary Materials (3)
This course discusses chemical thermodynamics and applies it to the origins and history of primitive planetary materials. The types of planetary materials will be discussed together with an overview of the chemical setting of their origins. We will discuss thermodynamic formalism, the various chemical pathways through which planetary materials are believed to have formed, the characterization and numerical methods we use to quantify such origins, and we will consider several case studies. May be co-convened with PTYS 513.
Introduction to Plasma Physics (3)
The purpose of this course is to present an introduction to the physics of plasmas. Topics include fundamental plasma scales and interactions, single particle motion, magnetohydrodynamic and fluid models, linear waves, kinetic theory, plasma stability, magnetic reconnection, and non-linear processes. The roles of these processes are considered in a variety of systems, including the Sun and stars, their extended atmospheres, planetary magnetospheres, and laboratory devices. The emphasis throughout will be on basic physical processes and the various approximations used in their application to realistic and relevant problems. The graduate course is identical to ASTR/ATMO/PHYS 514, with PTYS as the home department.
Asteroids, Comets and Kuiper Belt Objects (3)
This is an introduction to the "minor planets," the asteroids, comets and Kuiper Belt objects. The focus will be on origin and evolution (including current evolution), as well as techniques of study. It will include an evening at the telescope of an asteroid search program. Graduate-level requirement includes some original work or calculations in the paper/project submitted and to research one of the primary topics and lead the class discussion of it. PTYS 416 may be co-convened with PTYS 516.
Astronomical Instrumentation (2)
Radiant energy; signals and noise; detectors and techniques for imaging, photometry, polarimetry and spectroscopy. Examples from stellar and planetary astronomy in the x-ray, optical, infrared and radio. Equivalent to ASTR 418. ASTR is home department.
Physics of the Earth (3)
Fundamentals of the physics of the solid earth, including thermodynamics, rheology, geomagnetism, gravity, and planet tectonics. Prerequisite(s): MATH 254. GEOS is home department. May be convened with: PTYS/GEOS 519.
Moons (3)
We study the natural satellites (moons) of planets, starting with a survey of our own solar system, and introduce the principles and theories of their formation and evolution. How do Galilean satellites form? What causes Triton’s plumes? Is the Saturn system young? How old is the Moon? Why are binary asteroids and KBOs so common? Is Phobos falling apart? Then we will consider the science questions motivating current and planned missions of exploration, and the discovery of exomoons. The class will emphasize quantitative approaches and will therefore rely upon a common understanding of mechanics and calculus. Familiarity with geology is helpful but is not required. May be co-convened with PTYS 523.
Dynamic Meteorology (3)
Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Prerequisite: PHYS 426 or consent of instructor. ATMO is home department.
Dynamic Meteorology (3)
Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Prerequisite(s): ATMO 300A, ATMO 300B, PHYS 426 or consent of instructor. ATMO is home department. Usually offered: Spring.
Mars (3)
In-depth class about the planet Mars, including origin and evolution, geophysics, geology, atmospheric science, climate change, the search for life, and the history and future of Mars exploration. There will be guest lectures from professors and research scientists with expertise about aspects of Mars. There will be lots of discussion of recent results and scientific controversies about Mars. Graduate-level requirements include the completion of a research project that will be presented in class as well as a report. The research project could be analysis of Mars datasets, a laboratory experiment, or new theoretical modeling. Regular grades are awarded for this course: A B C D E. Prerequisite(s): PTYS 411, Geology of the Solar System is recommended but not required. Equivalent to/crosslisted: ASTR 442, GEOS 442. May be convened with: PTYS 542.
Origin of the Solar System and Other Planetary Systems (3)
This course will review the physical processes related to the formation and evolution of the protosolar nebula and of protoplanetary disks. In doing that, we will discuss the main stages of planet formation and how different disk conditions impact planetary architectures and planet properties. We will confront the theories of disk evolution and planet formation with observations of circumstellar disks, exoplanets, and the planets and minor bodies in our Solar System. This course is cross-listed with ASTR 450 and may be co-convened with PTYS 550.
Teaching College-Level Astronomy & Planetary Science (1)
Students will discuss their current or recent experiences as a student. They will also learn how to create productive learning environments by reviewing research on the nature of teaching and learning; setting course goals and objectives; using interactive lectures, peer instruction, engaging demonstrations, collaborative groups, tutorials, and ranking tasks; and observing other instructors. Students will conduct a collaborative research project of their choosing related to astronomy and space science. The course will culminate with students presenting mock lectures using these techniques. Prerequisite(s): Student must be Astronomy or Planetary Science undergraduate or graduate major. Consent of instructor. Typical structure: 1 hour lecture. May be repeated: for credit 3 times (maximum 4 enrollments). ASTR is home department. May be convened with: ASTR/PTYS 555. Usually offered: Spring.
Planetary Astrobiology (3)
This course will explore the processes related to planet formation, the properties of planets and the planetary conditions required for the emergence of life. We will study the formation of our Solar System and exoplanetary systems, the distribution and properties of exoplanets, and the potential habitability of other planets/moons in our system or extrasolar systems. The course will also review science cases and possible future astrobiology studies, both in site and via remote sensing, of astrobiologically relevant environments. Toward the end of the semester a few guest lectures will highlight particularly exciting and timely topics. This course may be co-convened with PTYS/ASTR 575. ASTR is home department.
Special Topics in Planetary Science (2-3)
Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required. Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries. Course may be co-convened with PTYS 595B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 3x (or up to 9 units). Regular grades assigned (ABC).