
Chapter 5

Elements of Analytical
Photogrammetry

5.1 Introduction, Concept of Image and Object Space

Photogrammetry is the science of obtaining reliable information about objects and of
measuring and interpreting this information. The task of obtaining information is called
data acquisition, a process we discussed at length in GS601, Chapter 2. Fig. 5.1(a)
depicts the data acquisition process. Light rays reflected from points on the object, say
from point A, form a divergent bundle which is transformed to a convergent bundle by
the lens. The principal rays of each bundle of all object points pass through the center
of the entrance and exit pupil, unchanged in direction. The front and rear nodal points
are good approximations for the pupil centers.

Another major task of photogrammetry is concerned with reconstructing the object
space from images. This entails two problems: geometric reconstruction (e.g. the
position of objects) and radiometric reconstruction (e.g. the gray shades of a surface).
The latter problem is relevant when photographic products are generated, such as or-
thophotos. Photogrammetry is mainly concerned with the geometric reconstruction.
The object space is only partially reconstructed, however. With partial reconstruction
we mean that only a fraction of the information recorded from the object space is used
for its representation. Take a map, for example. It may only show the perimeter of
buildings, not all the intricate details which make up real buildings.

Obviously, the success of reconstruction in terms of geometrical accuracy depends
largely on the similarity of the image bundle compared to the bundle of principal rays
that entered the lens during the instance of exposure. The purpose of camera calibration
is to define an image space so that the similarity becomes as close as possible.

The geometrical relationship between image and object space can best be established
by introducing suitable coordinate systems for referencing both spaces. We describe the
coordinate systems in the next section. Various relationships exist between image and
object space. In Table 5.1 the most common relationships are summarized, together with
the associated photogrammetric procedures and the underlying mathematical models.



50 5 Elements of Analytical Photogrammetry

A B

B’ A’
latent image

object space

image space

exit
pupil

entrance

A B

B’ A’
negative

diapositive

Figure 5.1: In (a) the data acquisition process is depicted. In (b) we illustrate the
reconstruction process.

In this chapter we describe these procedures and the mathematical models, except
aerotriangulation (block adjustment) which will be treated later. For one and the same
procedure, several mathematical models may exist. They differ mainly in the degree
of complexity, that is, how closely they describe physical processes. For example, a
similarity transformation is a good approximation to describe the process of converting
measured coordinates to photo-coordinates. This simple model can be extended to
describe more closely the underlying measuring process. With a few exceptions, we
will not address the refinement of the mathematical model.

5.2 Coordinate Systems

5.2.1 Photo-Coordinate System

The photo-coordinate system serves as the reference for expressing spatial positions
and relations of the image space. It is a 3-D cartesian system with the origin at the
perspective center. Fig. 5.2 depicts a diapositive with fiducial marks that define the
fiducial center FC. During the calibration procedure, the offset between fiducial center
and principal point of autocollimation, PP, is determined, as well as the origin of the
radial distortion, PS. The x, y coordinate plane is parallel to the photograph and the
positive x−axis points toward the flight direction.

Positions in the image space are expressed by point vectors. For example, point
vector p defines the position of point P on the diapositive (see Fig. 5.2). Point vectors
of positions on the diapositive (or negative) are also called image vectors. We have for
point P
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Table 5.1: Summary of the most important relationships between image and object
space.

relationship between procedure mathematical model

measuring system and interior orientation 2-D transformation
photo-coordinate system
photo-coordinate system and exterior orientation collinearity eq.
object coordinate system
photo-coordinate systems relative orientation collinearity eq.
of a stereopair coplanarity condition
model coordinate system and absolute orientation 7-parameter
object coordinate system transformation
several photo-coordinate systems bundle block collinearity eq.
and object coordinate system adjustment
several model coordinate systems independent model 7 parameter
and object coordinate system block adjustment transformation
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Figure 5.2: Definition of the photo-coordinate system.
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Note that for a diapositive the third component is negative. This changes to a positive
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value in the rare case a negative is used instead of a diapositive.

5.2.2 Object Space Coordinate Systems

In order to keep the mathematical development of relating image and object space sim-
ple, both spaces use 3-D cartesian coordinate systems. Positions of control points in
object space are likely available in another coordinate systems, e.g. State Plane coordi-
nates. It is important to convert any given coordinate system to a cartesian system before
photogrammetric procedures, such as orientations or aerotriangulation, are performed.

5.3 Interior Orientation

We have already introduced the term interior orientationin the discussion about camera
calibration (see GS601, Chapter 2), to define the metric characteristics of aerial cam-
eras. Here we use the same term for a slightly different purpose. From Table 5.1 we
conclude that the purpose of interior orientation is to establish the relationship between
a measuring system1 and the photo-coordinate system. This is necessary because it is
not possible to measure photo-coordinates directly. One reason is that the origin of the
photo-coordinate system is only mathematically defined; since it is not visible it cannot
coincide with the origin of the measuring system.

Fig. 5.3 illustrates the case where the diapositive to be measured is inserted in
the measuring system whose coordinate axis are xm, ym. The task is to determine
the transformation parameters so that measured points can be transformed into photo-
coordinates.

5.3.1 Similarity Transformation

The most simple mathematical model for interior orientation is a similarity transfor-
mation with the four parameters: translation vector t, scale factor s, and rotation angle
α.

xf = s(xm cos(α) − ym sin(α)) − xt (5.2)

yf = s(xm sin(α) + ym cos(α)) − yt (5.3)

These equations can also be written in the following form:

xf = a11xm− a12ym− xt (5.4)

yf = a12xm+ a11ym− yt (5.5)

If we consider a11, a12, xt, yt as parameters, then above equations are linear in the
parameters. Consequently, they can be directly used as observation equations for a least-
squares adjustment. Two observation equations are formed for every point known in

1Measuring systems are discussed in the next chapter.
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Figure 5.3: Relationship between measuring system and photo-coordinate system.

both coordinate systems. Known points in the photo-coordinate system are the fiducial
marks. Thus, computing the parameters of the interior orientation amounts to measuring
the fiducial marks (in the measuring system).

Actually, the fiducial marks are known with respect to the fiducial center. Therefore,
the process just described will determine parameters with respect to the fiducial coor-
dinate system xf, yf. Since the origin of the photo-coordinate system is known in the
fiducial system (x0, y0), the photo-coordinates are readily obtained by the translation

x = xf − x0 (5.6)

y = yf − y0 (5.7)

5.3.2 Affine Transformation

The affine transformation is an improved mathematical model for the interior orien-
tation because it more closely describes the physical reality of the measuring system.
The parameters are two scale factors sx, sy , a rotation angle α, a skew angle ε, and a
translation vector t = [xt, yt]T . The measuring system is a manufactured product and,
as such, not perfect. For example, the two coordinate axis are not exactly rectangular,
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as indicated in Fig. 5.3(b). The skew angle expresses the nonperpendicularity. Also,
the scale is different between the the two axis.

We have

xf = a11xm+ a12ym− xt (5.8)

yf = a21xm+ a22ym− yt (5.9)

where

a11 sx(cos(α− ε sin(α))
a12 —sy(sin(α))
a21 sx(sin(α+ ε cos(α))

Eq. 4.8 and 5.9 are also linear in the parameters. Like in the case of a similarity
transformation, these equations can be directly used as observation equations. With
four fiducial marks we obtain eight equations leaving a redundancy of two.

5.3.3 Correction for Radial Distortion

As discussed in GS601 Chapter 2, radial distortion causes off-axial points to be radially
displaced. A positive distortion increases the lateral magnification while a negative
distortion reduces it.

Distortion values are determined during the process of camera calibration. They
are usually listed in tabular form, either as a function of the radius or the angle at the
perspective center. For aerial cameras the distortion values are very small. Hence,
it suffices to linearly interpolate the distortion. Suppose we want to determine the
distortion for image point xp, yp. The radius is rp = (x2

p + y2
p)1/2. From the table

we obtain the distortion dri for ri < rp and drj for rj > rp. The distortion for rp is
interpolated

drp =
(drj − dri) rp

(rj − ri)
(5.10)

As indicated in Fig. 5.4 the corrections in x- and y-direction are

drx =
xp

rp
drp (5.11)

dry =
yp

rp
drp (5.12)

Finally, the photo-coordinates must be corrected as follows:

xp = xp − drx = xp(1 − drp

rp
) (5.13)

yp = yp − dry = yp(1 − drp

rp
) (5.14)
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The radial distortion can also be represented by an odd-power polynomial of the
form

dr = p0 r + p1 r
3 + p2 r

5 + · · · (5.15)

The coefficients pi are found by fitting the polynomial curve to the distortion values.
Eq. 5.15 is a linear observation equation. For every distortion value, an observation
equation is obtained.
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Figure 5.4: Correction for radial distortion.

In order to avoid numerical problems (ill-conditioned normal equation system), the
degree of the polynom should not exceed nine.

5.3.4 Correction for Refraction

Fig. 5.5 shows how an oblique light ray is refracted by the atmosphere. According to
Snell’s law, a light ray is refracted at the interface of two different media. The density
differences in the atmosphere are in fact different media. The refraction causes the
image to be displayed outwardly, quite similar to a positive radial distortion.

The radial displacement caused by refraction can be computed by

dref = K(r +
r3

c2
) (5.16)

K =
(

2410H
H2 − 6H + 250

− 2410h2

(h2 − 6h+ 250)H

)
10−6 (5.17)

These equations are based on a model atmosphere defined by the US Air Force. The
flying height H and the ground elevation h must be in units of kilometers.
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Figure 5.5: Correction for refraction.

5.3.5 Correction for Earth Curvature

As mentioned in the beginning of this Chapter, the mathematical derivation of the
relationships between image and object space are based on the assumption that for both
spaces, 3-D cartesian coordinate systems are employed. Since ground control points
may not directly be available in such a system, they must first be transformed, say from
a State Plane coordinate system to a cartesian system.

TheX andY coordinates of a State Plane system are cartesian, but not the elevations.
Fig. 5.6 shows the relationship between elevations above a datum and elevations in the
3-D cartesian system. If we approximate the datum by a sphere, radius R = 6372.2
km, then the radial displacement can be computed by

dearth=
r3 (H − ZP )

2 c2 R
(5.18)

Like radial distortion and refraction, the corrections in x− and y-direction is readily
determined by Eq. 4.13 and 5.14. Strictly speaking, the correction of photo-coordinates
due to earth curvature is not a refinement of the mathematical model. It is much better
to eliminate the influence of earth curvature by transforming the object space into a
3-D cartesian system before establishing relationships with the ground system. This
is always possible, except when compiling a map. A map, generated on an analytical
plotter, for example, is most likely plotted in a State Plane coordinate system. That is,
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Figure 5.6: Correction of photo-coordinates due to earth curvature.

the elevations refer to the datum and not to the XY plane of the cartesian coordinate
system. It would be quite awkward to produce the map in the cartesian system and
then transform it to the target system. Therefore, during map compilation, the photo-
coordinates are “corrected" so that conjugate bundle rays intersect in object space at
positions related to reference sphere.

5.3.6 Summary of Computing Photo-Coordinates

We summarize the main steps necessary to determine photo-coordinates. The process
to correct them for systematic errors, such as radial distortion, refraction and earth
curvature is also known as image refinement. Fig. 5.7 depicts the coordinate systems
involved, an imaged point P , and the correction vectors dr, dref, dearth.

1. Insert the diapositive into the measuring system (e.g. comparator, analytical
plotter) and measure the fiducial marks in the machine coordinate system xm, ym.
Compute the transformation parameters with a similarity or affine transformation.
The transformation establishes a relationship between the measuring system and
the fiducial coordinate system.

2. Translate the fiducial system to the photo-coordinate system (Eqs. 4.6 and 5.7).

3. Correct photo-coordinates for radial distortion. The radial distortion drp for point
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Figure 5.7: Interior orientation and image refinement.

P is found by linearly interpolating the values given in the calibration protocol
(Eq. 5.10).

4. Correct the photo-coordinates for refraction, according to Eqs. 4.16 and 5.17.
This correction is negative. The displacement caused by refraction is a functional
relationship of dref= f(H,h, r, c). With a flying heightH = 2, 000 m, elevation
above ground h = 500 m we obtain for a wide angle camera (c ≈ 0.15 m) a
correction of −4µm for r = 130 mm. An extreme example is a superwide angle
camera, H = 9, 000 m, h = 500 m, where dref= −34 µm for the same point.

5. Correct for earth curvature only if the control points (elevations) are not in a
cartesian coordinate system or if a map is compiled. Using the extreme example
as above, we obtain dearth= 65 µm. Since this correction has the opposite
sign of the refraction, the combined correction for refraction and earth curvature
would be dcomb= 31 µm. The correction due to earth curvature is larger than
the correction for refraction.
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5.4 Exterior Orientation

Exterior orientation is the relationship between image and object space. This is ac-
complished by determining the camera position in the object coordinate system. The
camera position is determined by the location of its perspective center and by its attitude,
expressed by three independent angles.
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Figure 5.8: Exterior Orientation.

The problem of establishing the six orientation parameters of the camera can conve-
niently be solved by the collinearity model. This model expresses the condition that the
perspective center C, the image point Pi, and the object point Po, must lie on a straight
line (see Fig. 5.8). If the exterior orientation is known, then the image vector pi and the
vector q in object space are collinear:

pi =
1
λ
q (5.19)

As depicted in Fig. 5.8, vector q is the difference between the two point vectors c
and p. For satisfying the collinearity condition, we rotate and scale q from object to
image space. We have

pi =
1
λ
Rq =

1
λ
R (p − c) (5.20)

with R an orthogonal rotation matrix with the three angles ω, φ and κ:
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R =

∣∣∣∣∣∣
cosφ cosκ − cosφ sinκ sinφ
cosω sinκ+ sinω sinφ cosκ cosω cosκ− sinω sinφ sinκ − sinω cosφ
sinω sinκ− cosω sinφ cosκ sinω cosκ+ cosω sinφ sinκ cosω cosφ

∣∣∣∣∣∣
(5.21)

Eq. 5.20 renders the following three coordinate equations.

x =
1
λ

(XP −XC)r11 + (YP − YC)r12 + (ZP − ZC)r13 (5.22)

y =
1
λ

(XP −XC)r21 + (YP − YC)r22 + (ZP − ZC)r23 (5.23)

−c =
1
λ

(XP −XC)r31 + (YP − YC)r32 + (ZP − ZC)r33 (5.24)

By dividing the first by the third and the second by the third equation, the scale
factor 1

λ is eliminated leading to the following two collinearity equations:

x = −c (XP −XC)r11 + (YP − YC)r12 + (ZP − ZC)r13
(XP −XC)r31 + (YP − YC)r32 + (ZP − ZC)r33

(5.25)

y = −c (XP −XC)r21 + (YP − YC)r22 + (ZP − ZC)r23
(XP −XC)r31 + (YP − YC)r32 + (ZP − ZC)r33

(5.26)

with:

pi =


 x

y
−f


 p =


 XP

YP

ZP


 c =


 XC

YC

ZC




The six parameters: XC , YC , ZC , ω, φ, κ are the unknown elements of exterior ori-
entation. The image coordinates x, y are normally known (measured) and the calibrated
focal length c is a constant. Every measured point leads to two equations, but also adds
three other unknowns, namely the coordinates of the object point (XP , YP , ZP ). Unless
the object points are known (control points), the problem cannot be solved with only
one photograph.

The collinearity model as presented here can be expanded to include parameters of
the interior orientation. The number of unknowns will be increased by three2. This
combined approach lets us determine simultaneously the parameters of interior and
exterior orientation of the cameras.

There are only limited applications for single photographs. We briefly discuss the
computation of the exterior orientation parameters, also known as single photograph re-
section, and the computation of photo-coordinates with known orientation parameters.
Single photographs cannot be used for the main task of photogrammetry, the recon-
struction of object space. Suppose we know the exterior orientation of a photograph.
Points in object space are not defined, unless we also know the scale factor 1/λ for
every bundle ray.

2Parameters of interior orientation: position of principal point and calibrated focal length. Additionally,
three parameters for radial distortion and three parameters for tangential distortion can be added.
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5.4.1 Single Photo Resection

The position and attitude of the camera with respect to the object coordinate system (ex-
terior orientation of camera) can be determined with help of the collinearity equations.
Eqs. 5.26 and 4.27 express measured quantities3 as a function of the exterior orienta-
tion parameters. Thus, the collinearity equations can be directly used as observation
equations, as the following functional representation illustrates.

x, y = f(XC , YC , ZC , ω, φ, κ︸ ︷︷ ︸
exterior orientation

, XP , YP , ZP )︸ ︷︷ ︸
object point

(5.27)

For every measured point two equations are obtained. If three control points are
measured, a total of 6 equations is formed to solve for the 6 parameters of exterior
orientation.

The collinearity equations are not linear in the parameters. Therefore, Eqs. 4.25 and
5.26 must be linearized with respect to the parameters. This also requires approximate
values with which the iterative process will start.

5.4.2 Computing Photo Coordinates

With known exterior orientation elements photo-coordinates can be easily computed
from Eqs. 4.25 and 5.26. This is useful for simulation studies where synthetic photo-
coordinates are computed.

Another application for the direct use of the collinearity equations is the real-time
loop of analytical plotters where photo-coordinates of ground points or model points
are computed after relative or absolute orientation (see next chapter, analytical plotters).

5.5 Orientation of a Stereopair

5.5.1 Model Space, Model Coordinate System

The application of single photographs in photogrammetry is limited because they cannot
be used for reconstructing the object space. Even though the exterior orientation ele-
ments may be known it will not be possible to determine ground points unless the scale
factor of every bundle ray is known. This problem is solved by exploiting stereopsis,
that is by using a second photograph of the same scene, taken from a different position.

Two photographs with different camera positions that show the same area, at least in
part, is called a stereopair. Suppose the two photographs are oriented such that conjugate
points(corresponding points) intersect. We call this intersection space model space. In
order for expressing relationships of this model space we introduce a reference system,
the model coordinate system. This system is 3-D and cartesian. Fig. 5.9 illustrates the
concept of model space and model coordinate system.

Introducing the model coordinate system requires the definition of its spatial position
(origin, attitude), and its scale. These are the seven parameters we have encountered

3We assume that the photo-coordinates are measured. In fact they are derived from measured machine
coordinates. The correlation caused by the transformation is neglected.
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Figure 5.9: The concept of model space (a) and model coordinate system (b).

in the transformation of 3-D cartesian systems. The decision on how to introduce the
parameters depends on the application; one definition of the model coordinate system
may be more suitable for a specific purpose than another. In the following subsections,
different definitions will be discussed.

Now the orientation of a stereopair amounts to determining the exterior orientation
parameters of both photographs, with respect to the model coordinate system. From
single photo resection, we recall that the collinearity equations form a suitable math-
ematical model to express the exterior orientation. We have the following functional
relationship between observed photo-coordinates and orientation parameters:

x, y = f(X ′
C , Y

′
C , Z

′
C , ω

′, φ′, κ′︸ ︷︷ ︸
ext. or′

, X ′′
C , Y

′′
C , Z

′′
C , ω

′′, φ′′, κ′′︸ ︷︷ ︸
ext. or′′

, X1, Y1, Z1︸ ︷︷ ︸
mod. pt 1

, · · · , Xn, Yn, Zn)︸ ︷︷ ︸
mod. pt n

(5.28)

where f refers to Eqs. 4.25 and 5.26. Every point measured in one photo-coordinate
system renders two equations. The same point must also be measured in the second
photo-coordinate system. Thus, for one model point we obtain 4 equations, or 4n
equations for n object points. On the other hand, n unknown model points lead to
3n parameters, or to a total 12 + 3n − 7. These are the exterior orientation elements
of both photographs, minus the parameters we have eliminated by defining the model
coordinate system. By equating the number of equations with number of parameters
we obtain the minimum number of points, nmin, which we need to measure for solving
the orientation problem.

4nmin = 12 − 7 + 3nmin =⇒ nmin = 5 (5.29)

The collinearity equations which are implicitly referred to in Eq. 5.28 are non-linear.
By linearizing the functional form we obtain

x, y ≈ f0 +
ϑf

ϑX ′
C

∆X ′
C +

ϑf

ϑY ′
C

∆Y ′
C + · · · +

ϑf

ϑZ ′′
C

∆Z ′′
C (5.30)
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with f0 denoting the function with initial estimates for the parameters.
For a point Pi, i = 1, · · · , n we obtain the following four generic observation

equations

r′
xi =

ϑf

ϑX ′
C

∆X ′
C +

ϑf

ϑY ′
C

∆Y ′
C + · · · +

ϑf

ϑZ ′′
C

∆Z ′′
C + f0 − x′

i

r′
yi =

ϑf

ϑX ′
C

∆X ′
C +

ϑf

ϑY ′
C

∆Y ′
C + · · · +

ϑf

ϑZ ′′
C

∆Z ′′
C + f0 − y′

i

r′′
xi =

ϑf

ϑX ′
C

∆X ′
C +

ϑf

ϑY ′
C

∆Y ′
C + · · · +

ϑf

ϑZ ′′
C

∆Z ′′
C + f0 − x′′

i (5.31)

r′′
yi =

ϑf

ϑX ′
C

∆X ′
C +

ϑf

ϑY ′
C

∆Y ′
C + · · · +

ϑf

ϑZ ′′
C

∆Z ′′
C + f0 − y′′

i

As mentioned earlier, the definition of the model coordinate system reduces the
number of parameters by seven. Several techniques exist to consider this in the least
squares approach.

1. The simplest approach is to eliminate the parameters from the parameter list.
We will use this approach for discussing the dependent and independent relative
orientation.

2. The knowledge about the 7 parameters can be introduced in the mathematical
model as seven independent pseudo observations (e.g. ∆XC = 0), or as condition
equations which are added to the normal equations. This second technique is more
flexible and it is particularly suited for computer implementation.

5.5.2 Dependent Relative Orientation

The definition of the model coordinate system in the case of a dependent relative orien-
tation is depicted in Fig. 5.10. The position and the orientation is identical to one of the
two photo-coordinate systems, say the primed system. This step amounts to introduc-
ing the exterior orientation of the photo-coordinate system as known. That is, we can
eliminate it from the parameter list. Next, we define the scale of the model coordinate
system. This is accomplished by defining the distance between the two perspective
centers (base), or more precisely, by defining the X-component.

With this definition of the model coordinate system we are left with the following
functional model

x, y = f(ym′′
c , zm

′′
c , ω

′′, φ′′, κ′′︸ ︷︷ ︸
ext. or′′

, xm1, ym1, zm1︸ ︷︷ ︸
model pt 1

, · · · , xmn, ymn, zmn)︸ ︷︷ ︸
model pt n

(5.32)

With 5 points we obtain 20 observation equations. On the other hand, there are 5
exterior orientation parameters and 5×3 model coordinates. Usually more than 5 points
are measured. The redundancy is r = n − 5. The typical case of relative orientation
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Figure 5.10: Definition of the model coordinate system and orientation parameters in
the dependent relative orientation.

on a stereoplotter with the 6 von Gruber points leads only to a redundancy of one. It is
highly recommended to measure more, say 12 points, in which case we find r = 7.

With a non linear mathematical model we need be concerned with suitable approx-
imations to ensure that the iterative least squares solution converges. In the case of the
dependent relative orientation we have

f0 = f(yc0c , zm
0
c , ω

0, φ0, κ0, xm0
1, ym

0
1, zm

0
1, · · · , xm0

n, ym
0
n, zm

0
n) (5.33)

The initial estimates for the five exterior orientation parameters are set to zero for
aerial applications, because the orientation angles are smaller than five degrees, and
xmc >> ymc, xmc >> zmc =⇒ ym0

c = zm0
c = 0. Initial positions for the model

points can be estimated from the corresponding measured photo-coordinates. If the
scale of the model coordinate system approximates the scale of the photo-coordinate
system, we estimate initial model points by

xm0
i ≈ x′

i

ym0
i ≈ y′

i (5.34)

zm0
i ≈ z′

i

The dependent relative orientation leaves one of the photographs unchanged; the
other one is oriented with respect to the unchanged system. This is of advantage for the
conjunction of successive photographs in a strip. In this fashion, all photographs of a
strip can be joined into the coordinate system of the first photograph.
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5.5.3 Independent Relative Orientation

Fig. 5.11 illustrates the definition of the model coordinate system in the independent
relative orientation.
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Figure 5.11: Definition of the model coordinate system and orientation parameters in
the independent relative orientation.

The origin is identical to one of the photo-coordinate systems, e.g. in Fig. 5.11 it
is the primed system. The orientation is chosen such that the positive xm-axis passes
through the perspective center of the other photo-coordinate system. This requires
determining two rotation angles in the primed photo-coordinate system. Moreover, it
eliminates the base components by, bz. The rotation about the x-axis (ω) is set to zero.
This means that the ym-axis is in the x− y plane of the photo-coordinate system. The
scale is chosen by defining xm′′

c = bx.
With this definition of the model coordinate system we have eliminated the position

of both perspective centers and one rotation angle. The following functional model
applies

x, y = f( φ′, κ′︸ ︷︷ ︸
ext.or.′

, ω′′, φ′′, κ′′︸ ︷︷ ︸
ext.or.′′

, xm1, ym1, zm1︸ ︷︷ ︸
model pt 1

, · · · , xmn, ymn, zmn)︸ ︷︷ ︸
model pt n

(5.35)

The number of equations, number of parameters and the redundancy are the same
as in the dependent relative orientation. Also, the same considerations regarding initial
estimates of parameters apply.

Note that the exterior orientation parameters of both types of relative orientation
are related. For example, the rotation angles φ′, κ′ can be computed from the spatial
direction of the base in the dependent relative orientation.
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φ′ = arctan(
zm′′

c

bx
) (5.36)

κ′ = arctan(
ym′′

c

(bx2 + zm2
c)1/2 ) (5.37)

5.5.4 Direct Orientation

In the direct orientation, the model coordinate system becomes identical with the ground
system, for example, a State Plane coordinate system (see Fig. 5.12). Since such systems
are already defined, we cannot introduce a priori information about exterior orientation
parameters like in both cases of relative orientation. Instead we use information about
some of the object points. Points with known coordinates are called control points. A
point with all three coordinates known is called full control point. If only X and Y is
known then we have a planimetric control point. Obviously, with an elevation control
point we know only the Z coordinate.
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Figure 5.12: Direct orientation of a stereopair with respect to a ground control coordinate
system.

The required information about 7 independent coordinates may come from different
arrangements of control points. For example, 2 full control points and an elevation, or
two planimetric control points and three elevations, will render the necessary informa-
tion. The functional model describing the latter case is given below:

x, y = f(X ′
C , Y

′
C , Z

′
C , ω

′, φ′, κ′︸ ︷︷ ︸
ext. or′

, X ′′
C , Y

′′
C , Z

′′
C , ω

′′, φ′′, κ′′︸ ︷︷ ︸
ext. or′′

, Z1, Z2, X3, Y3, X4, Y4, X5, Y5︸ ︷︷ ︸
unknown coord. of ctr. pts

(5.38)
The Z-coordinates of the planimetric control points 1 and 2 are not known and

thus remain in the parameter list. Likewise, X − Y -coordinates of elevation control
points 3, 4, 5 are parameters to be determined. Let us check the number of observation
equations for this particular case. Since we measure the five partial control points on both
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photographs we obtain 20 observation equations. The number of parameters amounts
to 12 exterior orientation elements and 8 coordinates. So we have just enough equations
to solve the problem. For every additional point 4 more equations and 3 parameters are
added. Thus, the redundancy increases linearly with the number of points measured.
Additional control points increase the redundancy more, e.g. full control points by 4,
an elevation by 2.

Like in the case of relative orientation, the mathematical model of the direct orienta-
tion is also based on the collinearity equations. Since it is non-linear in the parameters
we need good approximations to assure convergence. The estimation of initial val-
ues for the exterior orientation parameters may be accomplished in different ways. To
estimate X0

C , Y
0
C for example, one could perform a 2-D transformation of the photo

coordinates to planimetric control points. This would also result in a good estimation of
κ0 and of the photo scale which in turn can be used to estimate Z0

C = scale c. For aerial
applications we set ω0 = φ0 = 0. With these initial values of the exterior orientation
one can compute approximations X0

i , Y
0
i of object points where Z0

i = haver.
Note that the minimum number of points to be measured in the relative orientation

is 5. With the direct orientation, we need only three points assuming that two are full
control points. For orienting stereopairs with respect to a ground system, there is no
need to first perform a relative orientation followed by an absolute orientation. This
traditional approach stems from analog instruments where it is not possible to perform
a direct orientation by mechanical means.

5.5.5 Absolute Orientation

With absolute orientation we refer to the process of orienting a stereomodel to the
ground control system. Fig. 5.13 illustrates the concept. This is actually a very straight-
forward task which we discussed earlier under 7-parameter transformation. Note that
the 7-parameter transformation establishes the relationship between two 3-D Cartesian
coordinate systems. The model coordinate system is cartesian, but the ground control
system is usually not cartesian because the elevations refer to a separate datum. In that
case, the ground control system must first be transformed into an orthogonal system.

The transformation can only be solved if a priori information about some of the
parameters is introduced. This is most likely done by control points. The same consid-
erations apply as just discussed for the direct orientation.

From Fig. 5.13 we read the following vector equation which relates the model to
the ground control coordinate system:

p = sRpm − t (5.39)

where pm = [xm, ym, zm]T is the point vector in the model coordinate system,
p = [X,Y, Z]T the vector in the ground control system pointing to the object point
P and t = [Xt, Yt, Zt]T the translation vector between the origins of the 2 coordinate
systems. The rotation matrix R rotates vector pm into the ground control system and
s, the scale factor, scales it accordingly. The 7 parameters to be determined comprise
3 rotation angles of the orthogonal rotation matrix R, 3 translation parameters and one
scale factor.
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Figure 5.13: Absolute orientation entails the computation of the transformation param-
eters between model and ground coordinate system.

The following functional model applies:

x, y, z = f(Xt, Yt, Zt︸ ︷︷ ︸
translation

, ω, φ, κ︸ ︷︷ ︸
orientation

, s︸︷︷︸
scale

) (5.40)

In order to solve for the 7 parameters at least seven equations must be available. For
example, 2 full control points and one elevation control point would render a solution.
If more equations (that is, more control points) are available then the problem of deter-
mining the parameters can be cast as a least-squares adjustment. Here, the idea is to
minimize the discrepancies between the transformed and the available control points.
An observation equation for control point Pi in vector form can be written as
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ri = sRpmi − t − pi (5.41)

with r the residual vector [rx, ry, rz]T . Obviously, the model is not linear in the
parameters. As usual, linearized observation equations are obtained by taking the partial
derivatives with respect to the parameters. The linearized component equations are

The approximations may be obtained by first performing a 2-D transformation with
x, y-coordinates only.


