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f position as defined by coordinate sys-
ntial both to the process of map-making
erformance of spatial search and analysis

cal information. To plot geographical
map, it is necessary to define the posi-

s on the features with respect to a

me of reference or coordinate system.
ed such a frame of reference, it also pro-

s of partitioning data for purposes of
xing in a database. Thus the coordinate
be used to guide a search through the
order to determine which features occur
ity of a point or a region expressed in
¢ coordinates. The coordinate systems
ute the frames of reference necessary for

d searching geographical information
specify position in terms of the distances
ons from fixed points, lines or surfaces
). In Cartesian coordinate systems, posi-
defined by their perpendicular distances
of fixed axes. The simplest and most
mple is the case of two straight-line axes
g at right angles (Figure 4.1a). In polar
systems, positions are defined by their dis-
m a point of origin and an angle, or angles,
 direction relative to an axis or a plane
rough the origin (Fig 4.1c,d).
s on the earth’s surface are normally
a geographical coordinate system consist-
cgrees of latitude and longitude. This is a
Spherical polar coordinate system in which
s are measured with respect to planes pass-

Coordinate systems,
transformations and
map projections

ing through the centre of a sphere or approximate
sphere (spheroid) representing the shape of the earth
(Figure 4.1d). Distance is not specified in the coordi-
nate system but it is implicit, being the radius of the
earth at any given location on the surface. Because
latitude and longitude refer to positions in 3D space,
it is necessary for the purposes of cartography to
transform them to a 2D planar coordinate system, or
map grid. This type of transformation, which is called
a projection, can be done in many different ways. The
principal types of map projection transform from the
earth’s surface either directly to a plane, or to a cylin-
drical or a conical surface which, having been
conceptually wrapped around the earth, can be
unrolled to form a flat surface. When lines of latitude
and longitude are plotted on the map they are
referred to as a graticule (Figure 4.2).

All projections from geographical coordinates on
the earth’s surface to 2D map-grids involve some sort
of distortion. The choice of projection is usually gov-
erned by a desire to minimise one or more of the
distortions of either angles, linear dimensions or
areas. For this reason it is important to appreciate the
processes of map projection and the way in which
they introduce internal changes in scale which give
rise to these distortions.

A consequence of the variety of map projections is
that there are numerous map-grid coordinate systems
in use, some of which are unique to particular map-
ping organisations. This means that when compiling
databases or maps with data from different sources,
it will often be necessary to transform from one
coordinate system to another in order to work within
a single unifying framework. The use of computers
has been most important in facilitating these often
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-of the lateral positions to a planar map is then a
trivial matter, requiring only simple scaling of linear
dimensions. For more extensive regions, the planar
approximation becomes untenable for purposes of
accurate locational mapping, since it is impossible to
transfer measurements from what, in reality, is a
curved surface to a flat one, without introducing dis-
tortions such as stretching and tearing.

Line of equal iongitude

(14,20,18) (a meridian)

20 |18 _5,(18,20)
A Line of equal latitude

20 {a parallel)

Lok .

10 20 30 x

Spheres and spheroids

For small-scale maps which cover large areas of the
earth, it is appropriate to think of the earth as a
sphere of constant radius. From a global point of |
view this is a very good approximation, as the radius
actually only varies by about 10 km to either side of
an average value of 6371 km (Maling, 1992). For |
larger-scale mapping of extensive regions, the spheri-
cal approximation is not adequate and account must
be taken of the variation from a perfect sphere.
Maling (1991) has pointed out that for many GIS
applications, using data derived from secondary
sources (i.e. digitised maps), the inherent inaccuracies
of the data are such that the spherical earth assump-
tion is often quite appropriate.

According to gravitational theory, if the earth were
homogeneous in composition, its shape would be an
ellipsoid of rotation, generated by rotating an ellipse
about its shorter axis. Thus flattening occurs in a

(a) Two-dimensional (planar) rectangular
Cartesian coordinates

(b} Three-dimensional rectangular Cartesian
coordinates

4.2 Geographical coordinates are a special case of
cal coordinates in which a point P is defined by an
of latitude which is measured relative to the plane of
uator (perpendicular to the axis of rotation) and an
of longitude which is measured relative to a plane of
m meridian passing through the axis of rotation. The
rk of lines of equal longitude (meridian) and of equal
\ide (parallels) constitute the graticule.

(35°,28)

e of thé earthi ‘

{c) Planar polar coordinates (d) Spherical polar coordinates

Figure 4.1 Cartesian and polar coordinate systems. Cartesian coordinates consist of distances
measured relative to fixed axes. Polar coordinates consist of a distance from a fixed origin and
an angle or angles representing direction relative to a fixed axis or to a fixed place.

raphical maps are concerned with representing
yrmation: that is spatially related to the surface of

very complex geometric transformations which, when
performed manually, may be extremely laborious.

We have already seen in previous chapters that the
practice of computer cartography requires working
with local coordinate systems which are specific to par-
ticular graphics display devices and to particular data
acquisition systems. The use of technology for sec-
ondary data acquisition may require transformation
from digitising table coordinates to geographical or
map-grid coordinates, and again from the latter to plot-
ting device coordinates. When, in the course of
digitising, it is necessary to compensate for distortion in
the source map, (e.g. due to paper stretching), then the
transformations become more complicated. Problems
also arise when the only coordinate system marked on
the map is a non-rectangular graticule of latitude and
longitude. In these cases it may be necessary to use
interpolation procedures to deduce the map or geo-
graphical coordinates of points lying in-between known
control points (such as at graticule intersections).

rth. To represent the relationships accurately,
s should ideally be scaled down versions of the
sical or cultural features of the earth’s surface.
e the earth is three-dimensional, this implies cre-
g 3D maps. Apart from the occasional use of
es and physical raised-relief maps, and some spe-
ised 3D viewing systems, this is not generally
cticable. It is necessary, therefore, to concern our-
¢s with the question of how to project the 3D
1d onto the 2D surfaces which characterise
rent graphics technology. The process of this
jection depends very much upon the shape that
¢ consider the earth to be.

In the following sections of this chapter we sta
with a discussion of the way in which the shape of ¢
earth is described, before examining the planar an
spherical coordinate systems that are used as fram
of reference. In the context of this introduction
coordinate systems we review methods for makin
measurements of length and area, before introducin
the basics of simple geometric transformations
translations, scaling and rotation on the plane. T
second main part of the chapter is concerned wi
map projections, including issues of the relationsh
between the sphere and the surface of projection; t
concept of scale and way distortions are introduce
in map projections. The following part of the chapt
briefly reviews the problems of registering map da
by means of rubber sheet transformations when n
all projection parameters of existing maps a
known. In the final section we introduce a relativel
new type of coordinate system based on a tessellatio
of cells which approximate the shape of the globe:

flat earth

small regions, several kilometres in extent, the cur-
ture of the earth’s surface departs so little from a
ane that it is possible to treat the earth as a flat sur-
¢ce on which local terrain can be measured as
rpendicular variations in elevation. The projection

north-south direction along the axis of the earth’s
rotation. In vertical cross-section, the earth’s shape
would be an ellipse, with the major axis through the
equator and the minor axis coincident with the rota-
tional axis. Variations of relief due to mountains and
oceans can'be regarded as occurring above and below
the surface of the ellipsoid, while the direction of grav-
ity would always be normal to the ellipsoid surface,
which could be defined as the horizontal at any given
location. The shape of the earth represented by this
gravitational equipotential surface is called the geoid.
The geological composition of the earth is such
that there are both major and minor changes in rock
density, which give rise to anomalies in the gravity
field and hence in the form of the geoid. Satellite
observations of the gravity field indicate that it can be
represented by a surface that deviates somewhat from
an ellipsoid in that it is dented at the south pole and
squeezed in northern latitudes to produce something
which, when greatly exaggerated, resembles a pear
(Maling, 1992). These variations in the form of the
geoid are, however, so minor that for the purposes of
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large-scale topographic mapping, it is sufficient to Most of the ground-based measurements of . _
treat the earth as an ellipsoid. Because reference ellip- form of the earth have been based on the meth with ‘reCtangUlar cqordmate
soids used to approximate the earth’s shape are so  of astro-geodetic arc measurement. The meth _ ~
similar to a sphere, they are often described as a  involves determining various radii of curvature of ¢
spheroid, and in this context the terms ellipsoid and  earth from which the form of the overall ellipsg
spheroid are frequently used interchangeably. may be deduced. The principle depends upon me
The reference ellipsoid is used to define the geo-  suring the distance d between two distant po k
detic datum to which a geographical coordinate along with their angular separation 9, the latter bej
system may be linked. The dimensions of this ellip-  determined with respect to astronomical bo '
soid can be defined in terms of the ellipse that Using the relationship between these values
generates it (Figure 4.3). The form of an ellipse is  radius R, given by
defined by the lengths of the semi-major axis (a) and
the semi-minor axis (b). These values can be com- d=R8
bined to define the degree of flattening, f, also called  the radius can be found (R = dio).
the ellipticity, oblateness or compression, where Recent measurements of the shape of a referen
f=(a-b)la ellipsoid have made use of data obtained from s
lites. This is the case for reference ellipsoids suc|
The value of fis usually given as a fraction of the  }e North American Datum 1983 (NAD 83) and

form 1/n, where n = af(a — b). Several surveys have  Gegdetic Reference System (GRS) 80 and the W
been made with the intention of estimating the values  Geodetic System (WGS) 84 (Snyder, 1987).

of a and b, and hence f, for the earth (see Snyder
(1987) and Maling (1992) for lists of examples of offi-
cially accepted values). The results have varied
somewhat as a function of which part of the world Planér rectangular cboi’dinates
the survey data were obtained from, as is to be | _ ; __
expected in view of the slight departures from an
exact ellipsoid (as well as error in the survey meth-  When a planar rectangular (Cartesian) coordi
ods). Several different values of fare in current usage, system is adopted for cartographic purposes, t
and most are in the range 1/297 to 1/300, though sev-  and y, or horizontal and vertical, axes are usu
eral larger values of the order of 1/294 are also in use.  referred to as eastings and northings respectively.
The measurements for the corresponding values of @  coordinate system itself is called a grid, or map
and b only vary in general by less than a metre and  since it is frequently represented by sets of inter
are of the order of 6378 km and 6356 km respectively  ing horizontal and vertical lines, drawn at reg
(Snyder, 1987). intervals. Examples of such map grids are prov
by the Universal Transverse Mercator system and
US State Plane system (both consisting of a se
grids), and the British National Grid (a single g
all of which calibrate the grids in metres.
Graphical display devices and digitisers employ
tangular coordinate systems, but there is consider:
variation in the units of measurement and, to s
extent, in the orientation of the axes. At the lev
the hardware, graphics display screens consist 0
matrices of pixels which are individually addressab
by means of an integer coordinate system in w
Figure 4.3 The shape of the earth can be approximated by  unity corresponds to the separation between two adj
an ellipsoid, obtained by rotating an ellipse about its minor eyt pixels. Hard copy plotters and digitising tabl

axis {(coinciding with the earth’s axis of rotation). In the e . . .
figure the difference between the semi-major axis a and the also have a finite resolution, but it is often possib

semi-minor axis b is greatly exaggerated compared with the ~ Work directly with units of millimetres or centimetrs
difference between the values used for the earth. and fractions thereof, rather than just pixels.

obvious advantages with rectangular co-
for mapping in that there is a direct
ip between coordinate units and distances
und. This statement is subject to the limita-
roduced by projection distortions, but in the
the types of map grid used by national map-
neies, the distortions are sufficiently small to
red for many practical purposes. National
gkprojections do usually involve some distor-
the representation of area but, taking the
National Grid as an example, the divergence
ue areal scales may be no more than 0.1%
- 1991). The width of the British National
however, only about 9° of longitude. The
d grids of the widely used Universal Trans-
ercator projection (to which the British
1 is closely related) are 6°. Distortion of area
stance:becomes more significant for more

ance measurements

hottest distance between pairs of points in a
ular coordinate system is represented by
ht lines which can be measured simply using
gorus’s theorem. For example, given two points
asting and northing coordinates E1 = 302950,
2550802 and E2 = 315240, N2 = 2561844, the
nee in eastings is E2 — E1 = 12290 and the dif-
e in northings is N2 — N1 = 11042. Their
ce apart D is therefore

(122902 + 11042312 = 16521

we wish to measure the length of a digitised
is then only necessary to perform the same
f calculation for each successive pair of digi-
oints and to sum the results.

a measurements with rectangular
ordinates

surement of area on a rectangular grid is a rela-
y straightforward procedure. Assuming that the

region whose area is to be calculated is defined by a
polygon consisting of digitised points, it is possible to
express the area as the sum of the areas of a set of
trapezia. A trapezium is a quadrilateral, abcd with two
parallel sides. Referring to Figure 4.4, in which ab and
cd are the parallel sides and /# which is the distance
between them, the area A is given by the formula

A= "2 (ab + dc)

Considering the polygon in Figure 4.4, when vertical
lines are drawn from each, clockwise ordered, vertex
down to a horizontal line beneath the polygon, we can
see that the area of the polygon may be expressed in
terms of the differences in area between those trapezia
in which the uppermost edge is directed rightwards
and those in which the uppermost edge is directed
leftwards. If we assume that the width of each such
vertical trapezium (corresponding to /1 above) is given
by the difference in x coordinates of successive ver-
tices, we will find that some widths are positive and
some negative, corresponding to the senses of right
and left direction. This leads to the result that some
areas calculated by formula N will be positive and
some negative. Adding together all trapesium areas
then gives the area of the polygon, since the positive
areas correspond to the trapezia of the upper edges
and the negative ones to those of the lower edges. The
polygon area 4 is then given by the formula

n-1

A= 2 (K= X) (V= Y+~ )2

Figure 4.4 Measurement of the area of a polygon can be
performed by summing the positive and negative values
found for the areas of the individual trapezia (abcd) con-
structed relative to a horizontal line. The height of each
trapezium is found by subtracting successive x coordinates
on the boundary, represented by a list of clockwise, or anti-
clockwise, encoded vertices.
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where X, Y, are the coordinates of each vertex and  rather than a pair of axes. It is also relevant
Y, is the y coordinate of a horizontal line. Since Y, eral when it is appropriate to retain a se
may take any value, including zero, the formula may relative direction.
be simplified to In mathematical usage, polar coordinate
are conventionally measured anticlockwise
horizontal axis (Figure 4.1c). In surveying and
tography, the angles are usually measured clo
from a vertical axis, the angular units being
The computation required to find the area can be  degrees (0-360) or grads (0-400), where 90° and
reduced if we express the formula as follows: grads are equivalent to 7/2 radians. "

For a given origin, a cartographic polar coord|

B n-l of 1,8 can be expressed in rectangular coord
4,= 12 [(X” Y - X471) +i§i O Yf)] using the trigonometric formulae

n-
AI’ - h
i=1

1
Ky

X)X+ V)02

X =rsind, y =rcosd

Spherical coordinates
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Farth’s axis

\/

Conversely, the polar coordinates can be expre
terms of the rectangular coordinates by findi
from the relationship

The centroid of an area

The centroid of an area is a representative point that
is usually regarded as being a mean of all locations in
the area. A simple approximation to this location g4 that 8 can be found using the appropriate

could be found by taking the average of the co-  (an function on a computer. Knowing 9,
ordinates of all points that defined the perimeter.

However, if the density of points along the boundary
was variable, this would result in skewing the location  We may also note that
of the resulting centroid. A more accurate method is
to triangulate the area and find the area-weighted
mean of the centroids of the triangles. A triangle cen-
troid is found at the intersection of the lines joining
each vertex to the centre of the opposite side. For a
concave area, the centroid, found by whichever
method, may not be internal. If found to be external
(using a point-in-polygon test, as described in
Chapter 11), an internal centroid can be found by
extending a line horizontally from the initial centroid
and finding the centre of an adjacent pair of area
boundary intersections.

tan® = x/y

r=ylcos® or r=x/sind

’.2 = A’Z + ),2

Sphericél coordinates

We have seen that though planar coordinate s
are essential for constructing maps on flat su
they cannot be used for representing: ext
regions of the earth without introducing serio
tortion in measurements such as distance an
When high accuracy is not required these pr
of distortion can be avoided by the use of a sp
coordinate system. This provides a single; con
and relatively undistorted reference frame for r
ing positions and making measurements of
earth’s surface. The coordinates can then be pr
An alternative to planar rectangular Cartesian coor- o g suitable planar coordinate system when a st
dinates is the polar coordinate system in which  scale map of a particular region or aspect of th
position is defined by the distance r from an origin s required.
and the angle O relative to an axis passing through Any point on the surface of a sphere of given
the origin (Figure 4.1¢). This type of coordinate can be uniquely defined by the angles which

_ Polar codrdinétes on the plane

system is of use in cartography when plotting certain  radius passing through the point makes with two

types of projection in which position can conve- erence planes passing through the centre (Figu
niently be defined relative to a single, central point,  This is equivalent to a 3D polar coordinate syste

utaway view of the earth showing the angular
etween a.point P at latitude ¢ and longitude

¢ is measured in the plane of the meridian
es through P, and A is measured in the plane

istance from the point to the origin is
hence the locus of all possible positions
phere. On the earth, when it is treated as
the reference planes of the geographical
 system are the horizontal one perpendic-
the axis of rotation, which intersects the
the equator, and the vertical one which
e rotation axis and intersects the surface
called a meridian, which, for interna-
itposes, passes through Greenwich, London.
easured in the vertical, meridianal planes
to the equatorial plane constitute latitude,
ose measured in the horizontal, equatorial
ative to the plane of the Greenwich meridian
te longitude. These two angles of latitude
gitude are also described as ¢ (phi) and
a) respectively. Although the meridian
Greenwich is the one most commonly
as 0° longitude, many national surveys mea-
gitude relative to a meridian which passes
their capital city.

ord meridian refers specifically to the semi-
t arc formed by the intersection with the
surface of any plane which includes the axis of
n. A single meridian is constituted by an arc

that extends from the north pole to the south pole
where the word pole refers to the intersection of the
rotation axis with the earth’ surface. For any given
meridian there exists an antimeridian, which is the arc
in the same plane extending around the opposite side
of the earth. Angles of longitude are conventionally
negative when measured westwards of the zero
meridian and positive when measured eastwards. Fre-
quently the sign is omitted, direction being indicated
by the specification of east or west.

Angles of latitude are defined either north or south
of the equator, where northwards is conventionally
treated as positive and south is negative. All points of
a particular angle of latitude on the earth describe a
circle, the plane of which is parallel to that of the
equator. These circles, or lines of latitude, are referred
to as parallels.

Great circles and small circles

In a spherical coordinate system, any line between
two points must be curved, since it lies on a sphere.
An important class of such lines is the circular arcs
which result from the intersection of a plane with the
sphere. Both meridians and parallels belong to this
category. If the plane passes through the centre of the
sphere, then the arc is of maximum radius, equal to
the radius of the sphere, and it is termed a great
circle. The shortest distance between any two points
on a sphere is given by the length of the great circle
arc which extends between them (Figure 4.6). Pro-
vided that the two points are not diametrically
opposite, only one great circle will fit through them
and the shortest distance will be that of the shorter of
the two arcs which connect them.

It follows from the description of the meridian
given above that all meridians are great circles. Thus
all parallels are small circles, with the exception of
the equator (which is a great circle). It should be
noted that the shortest path between two points of
the same latitude will not, therefore, be along the cor-
responding parallel, unless it is the equator.

Measurement along any great circle arc

In order to measure distance along any great circle
arc, and hence be able to find the shortest distance
between any two points on a sphere, it is necessary to
make use of spherical trigonometry. Considering
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Figure 4.6 The shortest distance between two points A and
B measured on the earth’s surface, is given by the length of
the great circle arc which extends between them. The great
circlearc-lies on a plane which passes through the centre
of the earth. All meridians are great circles. The equator is
the only parallel that is a great circle.

Figure 4.7, it is possible to regard the great circle dis-
tance between any two points A(¢ A ) and B($,.1,)
as the length of one side of a spherical triangle (i.e. a
triangle on the surface of a sphere, as illustrated in
Figure 4.8) in which the other two sides are the
meridian arcs from the points to the nearest pole. If
the latitudes of the two points are ¢, and ¢,, their
angular distance to the pole will be ¢l = 90 - ¢, and
€2 =90 - ¢,, where ¢l and ¢2 are called the colati-
tudes. The spherical angle opposite the unknown side
is the difference dA in longitudes of the two points
where dA = A — A,. It is a simple matter, therefore, to
apply the cosine formula to derive the unknown
angular distance d, where

cosd = coscl.cosc2 + sincl.sinc2.cosdh

This formula can also be expressed in terms of the
latitudes where

cosd = sing,.sing, + cos¢,.cos,.cosdk

Having found the value of d, the angular distance in
radians, the arc length s is then given by

s=R.d

where R is the radius of the earth.

Geometric transformations in rectangular coordinate systems
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um scales, the earth is treated as an ellipsoid
‘on It is generated by specifying an ellipse
tated about its minor (shorter) axis. The
< is regarded as coincident with the earth’s
rotation and thus planar cross-sections
he axis will always be elliptical in shape.
ctions perpendicular to the axis are always
so that, on the spheroid, the equator and all
are circular. Note that no other intersections
e with the spheroid will result in circles.

s on a sphere, measurements of distances
1 two points on the surface of a spheroid
‘ upon using the radius of curvature to cal-
rc length. This introduces considerable
itational problems for spheroidal calculations
e the radius of curvature varies from one
o another on the surface as well as varying at
nt, according to which direction it is mea-
Further explanation of the characteristics
spheroid can be found in Maling (1992) and
f methods for measuring lengths of shortest
ces between two points on the surface of a
id, i.e. the geodesic, are given in Maling

Figure 4.7 The shortest (great circle) distance between
points A and B can be found by constructing a sphe
triangle between the two points and the pole. The an
distance can then be calculated, using the cosine form
from the colatitudes c1 and c¢2 of the points, and
spherical angle dA, which is the difference between
longitudes of the two points.

Geometry of the spheroid

It has already been noted that, for the purpo

ansformations in rectangular
accurate surveying and mapping of the earth at Iz

ystems

sic geometric transformations of translation,
and rotation are essential requirements for
ter visualisation and manipulation of map
ombinations of these basic transformations
eferred to as affine transformations. They are
d when changing between coordinate systems
when changing the location, orientation and
f displayed map symbols. The former require-
arises when data represented in 2D or 3D
grid coordinates must be displayed on a com-
device with its own coordinate system and, in
ontext of data acquisition, when data recorded
lly in a local survey coordinate system must be
formed to a standard map grid. If a survey was
ded on a paper map, the latter transformation
include an intermediate representation in digi-
table coordinates.

B a

Figure 4.8 A spherical triangle. Each side is part of a
circle on a sphere. Each angle (A, B and C) is meas
between the tangents of the two adjacent sides at the
angle corner. For a given corner, the tangents will lie in
plane which is a tangent to the sphere at that point:

"A

x:=x+TX | .‘"".(7’8)
yi=y+ Ty E :
L @.4)
NN N N SO NN S S |
>
Translation with displacements
of T,=3, Ty= 4

Figure 4.9 Translation transformation.

Translation

Translation in 2D (Figure 4.9) moves a point x,y to a
new position x', y' by adding components T , T,ie

X'=x+T,
y=y+T,
Scaling

To scale a point x,y to a new point x', y' we use the
two scale factors S_and Sy relating to scaling in each
of the two (or three) dimensions (Figure 4.10). Thus
for two dimensions

X'=x8,
Y =28,

This scaling can be regarded as taking place relative
to the origin of the coordinate system. When applied
to an object defined by a number of points, the whole
object is liable to be displaced, in the sense that the
centre of the object will move by an amount deter-
mined by the scale factors. If it is required to keep
one point of the object fixed, then that fixed point
should be moved to the origin before applying the
scaling, after which the ‘fixed’ point should be moved
back to its original position. For a fixed point F.F,
the scaling therefore consists of the composite trans-
formation of (-F,, —F) (S, S) (F,, F). Hence to
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(a) Scaling relative to the origin

x'=x.8,
y'=y-.S,

Scaling with object centred
on the origin. Scale factors
S, =2, Sy =3

as a sequence of basic transformations

{b) Scaling relative to a fixed point F(2,2) using scale factors S, = 2, Sy = 3, expressed

X =xcosf-ysin@
y=xsin@+ycos ST

-2 (40)

122
xnnn:nn;)

X

Scaling object not centred
on origin. Scale factors
Sx =2, Sy =3

Rotation of object
centred on origin
0 =45°

as a sequence of basic transformations

Translate F to origin
T, =-2, Ty =-2

Initial position

Figure 4.10 Scaling transformation.

find the transformed point x™, y™ from the initial
point x,y, we can calculate as follows:

X =x-F,
y=y-F

N=x.S =(x-F)S,
V=P8, =0-F)S,
x"=x"+F =xS5 +F(1-S5)
Y=yt Fy = y.Sy + Fy(l - S),)

Rotation

To rotate a point x,y about the origin by an angle 6
to a new position x', y' the formula is

x' = x cosB — y sin@
y' = x sin@ + y cosO
The rotation, as defined above, is anticlockwise rela-

tive to the origin of the coordinate system (Figure
4.11). In order to rotate an object about an arbitrary

(@) Rotation relative to the origin (positive anticlockwise)

Rotation of object
not centred on origin
6 =45°

(b) Rotation about a fixed point F (2,2) by an angle 8 = 45° expressed

(\ ¢'
"""" F2,2) o <L
L1 | I | (I T | A A4 B B B B I N T W T W

I I [ |

Scale with Translate F Initial position Transiate F to origin Rotate by 6 = 45° Translate F

S, =2, Sy =3 back to initial T.=-2, Ty =2 back to initial
position position
Tx=2,Ty=2 TX:2,Ty=2

Figure 4.11 Rotation transformation,

origin it is necessary to introduce translations rel
to the given point before and after the rotation
similar manner to that described above for scal
The latter local rotations are relevant in comp
cartography when manipulating individual map syi
bols such as arrows and items of text.

To change from one coordinate system to anoth
one of the coordinate systems must be defined
terms of the other. Assuming, as we are here, t
both coordinate systems are rectangular, we need
know a common point that can be defined in bo
coordinate systems, scale factors in each dimensi
(i.e. how many units of one coordinate system th
are for each unit of the other), and the orientation

re 4.12 A change in coordinate systems from system
0 system B can be achieved by applying to the points in
inate system A those transformations required to align
coordinate system of B with that of A.

the axes of one system relative to the other. Let us
suppose, referring to Figure 4.12, that we wish to
transform points in coordinate system A to coordi-
nate system B. The situation is particularly simple if
the common point is the origin of B. The transforma-
tion consists of applying to the points represented
initially in system A those transformations required
to align the coordinate system of B with that of A.
Referring to Figure 4.12, 0,,0, is the origin of B
defined in coordinate system A, B_, Bsy are the num-
bers of units of B per unit of A in the x and y axes,
and 6 is the angle between the x-axis of B and the
x-axis of A. The steps are then

1. Translate by -0, -0, moving the origin of B to
that of A,

2. Rotate by -6, bringing the axes into alignment.

3. Scale by B, Bsy to make the units of each dimen-
sion equivalent.

If the common point used for translation in step 1 is
not the actual origin of coordinate system B, but is
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Dispiay coordinate
system

Viewpoint

Figure 4.13 The window to viewport transformation in com
display a rectangular region of the user's (world) coordinate

display device, defined by a viewport.

some point b, b), in the coordinate system of B, we
need to introduce a fourth step to add on the coordi-
nates of this point. The additional step is

4. Translate by b, b, to add on the local origin.

A practical example of this change in coordinate sys-
tems would be where coordinate system B represents
the grid system of a map being digitised on a digitis-
ing table represented by coordinate system A. If this
was the case then the scale factors and angle might
not be specified explicitly, but could be derived from
three control points which the operator was required
to specify. These points might be the origin of the
map sheet and one point on each of the two adjacent
corners of the map grid.

Another example of an application of the coordi-
nate system transformation is that of plotting a
digital map defined in its own coordinate system on a
graphics display device. In computer graphics termi-
nology, the transformation would be defined by a
window on the user’s coordinate system, i.e a rectan-
gular area defining the region of the map to be
displayed, and a viewport defining a corresponding
rectangle on the display surface of the device in the
graphics display coordinate system. Usually both rec-
tangles are oriented parallel to each other, so that
there is no need for the rotation step (Figure 4.13).
The initial translation is given by the lower left
corner of the viewport. The scalings are derived from’
the ratios of the sides of the window and viewport
and the final translation is given by the coordinates
of the lower left of the window.
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Map projections involve transforming a represe
tion of the world in three dimensions f ‘ MILLER

different ways in which the projection can be
formed and, in order to understand the variet
map projections that result (Figure 4.14), it is us
to take account of several aspects of the problem.
particular relevance are () the relationship of
planar surface to the global surface and (b)
nature of the distortion which the projection enta
The issue of distortion introduces in turn a requi
ment to consider variation in scale within a map a
its specific association with the distortion
lengths, angles and areas,

Disposition of the plane of projection

GOODE
The relationship between the map plane and ECKERT
spherical or spheroidal surface tves rise to three d g by kind permission of the
tilzlct classes OI; rojection: azim%:t/za/ cylindrical a Figure 4.14 Examples of world map projections. Reproduced by P
conical (Figure f 1 51) ) & University of Wisconsin Cartography Lab.
In the first case, of planar projection, the plane hing it
i . . . . indri round the globe, touching 1
poin o le}glalcie?a aS:FII)II'mg ﬂz;t o e ;10 lsom ole from which meridians will radiate acco.rdm‘g to wrapped ‘CYIll ndl.ICfin}’:ll: 1;\Illote tha%t unwrapping the
let?;nm\;rliicil% Oki it N lesufts mt?ln amr?ut la IC); heir respective azimuths. In the second, cylindrical, along a single great circle.
ecti akes its name from the particular

. . . ; - i i ar surface can be done
in which the planc is  {  to th th o son ass of projection the plane is derived from a surface  cylinder into a genuine plan
m which the plane is a tangent to the north or
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Azimuthal

Cylindrical

Normal Transverse Oblique

Conical

\.

without introducing further distortion. In the third
class of projection, the conic, the map plane is
derived from a surface that is wrapped around the
earth in the shape of a cone touching the globe along
a small circle or an ellipse. Projection surfaces such
as the cone and cylinder, which can be unwrapped
without distortion to form a plane, are called
developable surfaces. It should be borne in mind
when referring to planar, conical and cylindrical
projections that ideas of the tangential plane, cylin-
der and cone are geometric concepts which are
intended to help envisage the projection transforma-
tion. The projections are defined by mathematical
functions which transform points on the globe onto
the map surface along projection rays emanating in
various ways from the globe to the map.

Each of the three forms of projection has modifi-
cations in which the projection surface intersects the
earth rather than touching it tangentially at a point
or along an arc (Figure 4.16). When the plane, cylin-
der or cone intersects the earth, it is described as
secant. The secant plane intersects a spherical globe
along a single circular arc. Both the secant cylinder
and the secant cone intersect along two parallel

Azimuthal

Figure 4.16 Secant projections are ones in which the plane, cylinder or cone of projection inter-
sects the globe, as opposed to touching it tangentially.

Figure 4.15 The three main classes of map projection.

Gylindrical

small circles. If the ellipsoidal shape of the e
taken into account, the arcs of intersection wil
be exact small circles if they lie in planes p
with the Equator and hence perpendicular
rotational axis.

Aspect

The appearance of a map projection, in term
form of the latitude-longitude graticules,
according to the orientation, or aspect, of the
cylinder or cone of projection relative to the
The aspect of a projection is usually descri
being either normal, transverse or oblique (
4.17). The normal aspect of the azimuthal p
tion refers to the situation when the pla
projection is located at one or other pole, perpe
ular to the earth’s axis. It is characterise
radiating lines of longitude and concentric citc
latitude. The normal aspect of a conical proje
has a similar pattern of latitude and longitude
arises when the cone touches or intercepts the
on a line or lines of latitude, corresponding t

Figure 4.17 Aspects of azimuthal, cylindrical and conical projections. In the normal aspects of
the azimuthal and conical projection, the plane and cone respectively may be positioned at the
north or south poles. In the transverse aspects, the axes of the cone and cylinder, and the per-
pendicular to the plane may take on any horizontal (equatorial) orientation.

the cone being parallel to the earth’s axis.
nsverse aspects of both azimuthal and coni-
jections occur when the orientation of the
nd cone is at 90° to that of the normal
The appearance of the resulting maps are
uished by the equator being horizontal while
entral meridian is vertical. Oblique aspects
0 all possible intermediate orientations of the

tion corresponds to the cylinder being orientated
north-south parallel to the earth’s axis. In the trans-
verse aspect, the cylinder is orientated east—west and,
when tangential, touches the globe along a great
circle. The graticule includes a vertical central meri-
dian and a horizontal equator. Oblique aspects of
cylindrical projections refer to all other orientations
of the cylinder relative to the globe.

Figure 4.18 illustrates the way in which the widely
used Universal Transverse Mercator (UTM) projec-
tion system specifies 30 orientations for the
horizontal cylinder, providing 60 UTM zones, each
of 6° width (one on either side of the cylinder). The
relationship between an individual zone and the cor-
responding grid system is illustrated in Figure 4.19.

Conical

- are vertically orientated, though these lines may
urved, depending upon other properties of the
cction. The normal aspect of cylindrical projec-
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Figure 4.18 The UTM projection system employs 30 orientations of a cylinder, giving 60 zones each 6° wide. After M

(1992).

Concepts of scale

Geographical maps can be thought of as scaled
graphic representations of physical or abstract fea-
tures of the earth. The map reader usually assumes
that dimensions on the map can be related to their
true dimension in terms of a scale value which may
be expressed by the ratio between map dimen-
sion and actual dimension. When the scale value is
given as a fraction in which the numerator is 1, it is
called the representative fraction. If the representa-
tive fraction is relatively large, such as 1/1250 for a
detailed urban survey, the map is referred to as

large scale, whereas maps covering much la
areas in which the representative fraction is ¢
spondingly smaller, such as 1/500 000, are refe
to as small scale. In general, the meaning of |
small and medium scale will depend upon the ¢t
ventions of particular applications.

The direct relationship between map dimenst
and actual dimension, implied by the representat
fraction, is in practice somewhat misleading. Thi
because the distortion involved in transferring dimen-
sions from the curved surface of the earth to a plai
map prevent the possibility of a constant sc
throughout the map.

Map projections
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O°1‘3°\3°E 0 mN
10 000 000
mN

500 000 1000 000

Each 6° wide UTM zone corresponds to a pair
id systems for the north and south hemisphere
Each grid extends from O to 10 000 000 in the
ction and 0 to 1000 000 in the east direction.

ptually the production of a map requires
arth be scaled down to a generating globe of
at is compatible with the size of map plane
ch it is to be projected. The ratio between
s of the generating globe and the radius of
world equivalent is called the principal scale,
to this scale that the representative fraction
e he representative fraction can only apply
o the scale at one or two specific points or
he map, which are positions of zero distor-
ese locations are those of contact or
ction between the projection plane, cone or
and the globe. Away from these positions of
ortion, the scale varies in a manner that
s upon the type of projection. The variation
leads to the notion of particular scale, which
o the scale in a specified direction at a speci-
nt on the map.

rtion

tanding the way in which scale varies on map
ons is equivalent to understanding the nature
distortion that all map projections contain. One
s of analysing distortion, devised by Tissot, is to

examine, for corresponding points on the map and the
globe, the way in which an infinitely small circle on
the generating globe changes shape when plotted on
the map. For positions on the map where there is zero
distortion, the circle will remain a circle of the same
radius. In all other cases, the circle becomes trans-
formed in terms of either its size, its shape, or both. In
the general case, the circle becomes an ellipse, the
semi-major and semi-minor axes of which we may
refer to as @ and b respectively. The orientation of the
two axes bears a special relationship to the globe, in
that there is normally one pair of perpendicular direc-
tions at any given position on the globe which remain
perpendicular after projection and assume the orien-
tation of the axes of the ellipse. Tissot called the
ellipse an indicatrix and its axes are called the princi-
pal directions at the given point. If the original circle is
defined as being of unit radius, then the two semi axis
dimensions, ¢ and b, are equal to the maximum and
minimum particular scales for that point on the map.

The relationships between the values ¢ and b can
be used to characterise the distortion properties of a
projection. The product of « and b is related to the
area of the ellipse and gives rise to a quantity known
as the area scale s (also known as p) where

s=ab

If the area of the ellipse remains the same as the orig-
inal circle then s = 1. Maps in which this property
holds are called equal-area projections, since they
involve no distortion of area between the globe and
the map. Maintenance of equal area is accompanied
by considerable variation in the individual values and
orientations of ¢ and 5.

The consequence of any departure from circularity
of the original circle is the distortion of angles. Angu-
lar distortion can only be avoided by keeping a = b,
i.e. making the ellipse circular. Maps in which ¢ = b
at all points are known as conformal projections. 1t is
important to realise that the two properties of equal
area and conformality are always exclusive on a pro-
jection from a globe.

On maps which include angular deformation, it is
of interest to be able to monitor the degree of defor-
mation at different points on the map. For every
point, there is a maximum value of angular deforma-
tion ®, given by the change in angle between two
directions on the globe, each of which has undergone
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the maximum individual deflections for that point.
The value of @ is given by the formula
©w_a-b

in—=
s 2 a+b

 Choosinga map projection

When deciding on the most appropriate map projec-
tion for a particular purpose, one important choice is
between equal area and equal angle (conformal) pro-
jections. When representing a very large area on a
small-scale map, it will usually be the case that an
equal area map is preferable, as it will result in a real-
istic representation of the relative size of different
regions. Thus projections commonly used for world
maps, such as the Mollweide and Goode projections,
are equal area (Figure 4.14). Note that the Mercator
projection, which is now rarely used for world map-
ping, results in gross distortions of the relative size
of continents (Figure 4.14). For high- accuracy maps
on which measurements of angle may be made, an
equal angle projection is appropriate.

When choosing between planar, conic and cylindri-
cal projections, and their respective aspect, the issue
of distortion should be considered. It was pointed
out earlier that the point or line of true scale on a
map projection coincides with the point (or lines) of
contact of the projection surface and the globe. Dis-
tortion increases with increasing distance from these
locations. To reduce the maximum degree of distor-
tion and to provide an even spread of distortion, the
point or lines of true scale should be located as cen-
trally as possible.

Thus for mapping a circular region, such as the
whole of the Antarctic, a normal planar (aximuthal)
projection is appropriate, since distortion will
increase equally in all directions from the centre
outwards. For an elongated region either a conic or
a cylindrical projection may be appropriate, the
objective being to locate the true scale line or lines
axially relative to the elongation. For an east-west
extended map, a normal conic projection is appro-
priate since distortion will be at a minimum along
lines of latitude.

The use of a secant projection introduces two |j
of true scale and hence reduces the distortio
north-south direction for that projectio
north-south oriented region, such as Britiain
appropriately mapped with a transverse cylin
projection, since the true scale lines are ori
north-south. Transverse cylindrical projection
as the UTM and the British National Grid are
and hence reduce the distortion across the map,
compared with a tangential projection.

t transformations

e of the various well-defined formulae and
tes for: converting back and forth between
shical and grid coordinates depends upon a

Ahalyt;iCa!‘ tr&hsfo%a@ﬁdnéz ‘1

Transformations from geographical coordina
the grid system of a particular projection ¢
specified precisely using mathematical formula
few cases the formulae are relatively simple, pa
larly when the earth is assumed spherical. Th
the Mercator projection

x=RA
y = Rln (tan(n/4 + $/2))

where x and y are grid coordinates, A and ¢ are
tude and latitude, R is the radius of the scaled s
and In is the natural logarithm (i.e. to the b
The equations are called the forward solution
reverse transformation from grid coordinates t
graphical coordinates is called the inverse so
and, in our simple example of the Mercator p
tion, is given by

=

e

¢ =n/2 -2 tan"\(e¥R)

A=x/R+ A,

where e is the base of natural logarithms and A,
meridian passing through the origin of the geo
ical coordinate system.

For other map projections, forward solutio
often more complicated than the above examp
become especially so when the transformation
account of the non-spherical form of the earf
inverse solutions often require an iterative fo
solution. Details of the solutions for many imp
transformations are found in Snyder (1987).

clear definition of the projection in use. It is quite
common, however, to encounter maps in which inad-
equate details of the projection are provided. If this is
so then it may sometimes be necessary to guess
appropriate projections and hope for the best. An
alternative approach is to make use of so-called

- .20 AAn examp_le of a global tessellation, based on triangular faces. From Goodchild and Shiren (1992).
uced with permission from National Center for Geographic Information and Analysis.
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rubber sheet transformations, which provide a means
of converting a poorly defined coordinate system to a
well-defined system, on the assumption that it is pos-
sible to identify some control points, the location of
which is known in both coordinate systems. Such
control points are likely to correspond to the location
of features which can be clearly recognised in maps
represented in both coordinate systems.

Rubber sheet transformations are also of use in
situations other than when a conventional map pro-
jection is poorly defined. One important application
is for registering satellite imagery with geographical
or grid coordinate systems, the problem being that
the geometry of the projection from the surface of
the earth to the satellite’s imaging system may not be
precisely defined. Another application arises in the
context of map digitising when adjacent or overlap-
ping map sheets are found not to match up precisely,
due to errors in digitising and due to distortion in the
paper on which the map is drawn.

One technique for rubber sheet transformations
makes use of polynomial equations to relate the co-
ordinates in one map to those in the other. Rubber
sheet transformations generally need to account for
differences which are non-linear and thus require
higher-order polynomials. Another approach, which is
designed to ensure that the control points transform
precisely from one coordinate system to the other,
makes use of a triangulation scheme in which the con-
trol points are triangulated in the two maps and each
equivalent triangle is transformed individually, with
points internal to the triangles being interpolated in a
linear manner (White and Griffin, 1985).

 Global hierarchical tessellations

Interest in the development of global databases has
led to efforts to design locational coding schemes (or
geocodings) which allow spatial phenomena to be
studied at different levels of detail in a consistent
fashion across extensive regions of the earth. We have
already seen that conventional projections can only
retain simultaneously approximations to properties
of equal area and a lack of shape distortion across

limited areas. Following Goodchild and §
(1992), we can identify four desirable propert
global coding scheme for recording properties
earth’s surface in terms of finite spatial elemen
areal units): ‘

¢ data used in GIS are two dimensional,
_derived from maps which are based on
from the 3D world to a planar map
ations on the earth’s surface can be
pendently of a map by means of the geo-
oordinates of latitude and longitude,
form of polar coordinates. When making
ents in terms of the geographical coordi-
arth is assumed to be either a sphere or,
er accuracy is required, an ellipsoid of
or spheroid. These mathematical models of
s form are used when projecting to 2D
jections are classed broadly as cylindrical,
d conical, according to the type of surface
h the projection is made, and as normal,
nd oblique according to the aspect of the
_surface. All map projections introduce
m of distortion, which leads to a further
tion into equal-area maps, which preserve
ent of area, and conformal maps which

1. The scheme should be hierarchical with ele;
at each level being subdivisions of element
next higher level.

2. Elements at any level of resolution shou
approximately the same size, wherever {
located on the globe. k

3. Elements at any level should all be approxim,
the same shape, wherever they are located.

4. The scheme should preserve topological r
ships correctly, particularly adjacencies.

One of the simpler schemes which aims to me
objectives is that described by Dutton (1989)
represents the globe in a hierarchical fashion
dividing the triangular facets of an octagon,
vertices of which are located on the earth’s'su
the north and south poles and at 0°, 90°, -
180° longitude. An octagon is one of the five
polyhedra or Platonic solids, the vertices of w
on a sphere. In Dutton’s scheme, the triangula
are divided recursively into four subtriangle
triangle with a horizontal base, the subtrian
numbered 0 for the central one, 1 for the upp
and 2 and 3 for the lower left and lower ri
respectively. As triangles are subdivided, ¢
allocated numeric codes which Dutton call
(quaternary triangular mesh) codes. Each tim
triangle is created its code consists of thal
parent with the addition, on the right, of 0, 1
depending on its location within the parent.
with each level of subdivision the triangles
smaller, and Dutton shows that at the 21st
subdivision their size is approximately 1 m
down to 17 c¢m at the 24th level (Figure 4.2
trates a level 4 subdivision). An important p
of the QTM codes is the fact that the length ¢
code can be used to imply a particular level of
tional accuracy. Thus individual points cou
allocated the code of the smallest triangle they
known reliably to occupy. Similar objects of k
areal extent could be allocated to the triangl
completely enclosed them.

preserve angles in the projection, Computing tech-
nology has resulted in a recent interest in the
possible use of global tessellations of the earth’s sur-
face, which provide a discrete, and in some cases
variable scale, of cell-based locational referencing in
three dimensions.

~ Further reading

A more detailed account of much of the material in this
chapter concerning map coordinates, the form of the
earth and map projections can be found in Maling (1989,
1992) and Snyder (1987), which have been referred to in
course of the chapter. For a more extensive coverage of
the transformations used in computer graphics, see
Rogers and Adams (1990), in particular Chapters 2

and 3. Tobler has published several papers on the
transformations used in cartograms, whereby the scale
of a map is modified locally in proportion to a mapped
variable such as population (see for example Tobler, 1979,
1986). Nyerges and Jankowski (1989) have developed an
expert system for helping in selecting map projections.




