2

Electromagnetic waves in free space

2.1 Electromagnetic waves

The propagation of electromagnetic radiation as waves is a consequence of the
form of Maxwell’s equations, as Maxwell himself realised.' One form in which
these equations can be written, for free space, is

V-E=0 (2.1.1)
V-B=0 (2.1.2)
VxE=-B (2.1.3)
V x B = gyuoE (2.1.4)

In these expressions, E and B are the electric and magnetic field vectors,
respectively, of the wave, and ¢, and u are the electric permittivity and the
magnetic permeability of free space.

It can easily be confirmed that the plane wave

E. = E, cos(wt — kz) (2.2)
E, =0
E.=0
B, =0

E
B, = TO cos(wt — kz) (2.3)
B.=0

satisfies the equations (2.1.1) to (2.1.4), provided that the wave speed
1
v Eolko

The constant c is the speed of light, and of all electromagnetic waves, in free
space. It has a value of 2.99792458 x 108 ms~'. (This value is very well deter-

(2.4)

_@_
c_k_

' It is assumed that the reader is more or less familiar with the theory of electromagnetism. If not, the
range of suitable textbooks is very wide. I still find that volume 2 of the Feynman Lectures on Physics
(Feynman et al., 1964) offers one of the most illuminating approaches.

9
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10 Electromagnetic waves in free space

mined, and in fact now defines the metre in terms of the second. Values of
important constants such as ¢ are given in the appendix.)

Note that we have used the angular frequency w and the wavenumber k,
rather than the more familiar cyclic frequency f and wavelength 4. The former
are usually more useful, and we shall use them often. They are related to
frequency and wavelength, respectively, by

w =27 .5)
and
P (2.6)
A

In principle, the frequency of an electromagnetic wave can take any value, and
the whole range of possible frequencies is called the electromagnetic spectrum.
Different regions of the spectrum are conventionally given names such as light,
radio waves, ultraviolet radiation, and so on, usually referring to the manner in
which the radiation is generated or detected. The electromagnetic spectrum is
shown schematically in figure 2.1.

Returning to the electromagnetic wave specified by equations (2.2) and (2.3),
Ey is the amplitude of the electric field, and Ey/c is the amplitude of the mag-
netic field, although since these two amplitudes are related by the factor c it is
common to speak of E, as the amplitude of the wave. The wave carries energy
in its direction of propagation, which is the positive z-direction, and the flux
density (power crossing unit area normal to the propagation direction) is given
by

Eo
2.7
A (2.7)
where Z, is the impedance of free space, defined by
7, = |*0 (2.8)

&o

It has a value of approximately 377 Q.

2.2 Polarisation

The wave specified by equations (2.2) and (2.3) is not the most general electro-
magnetic wave propagating in the z-direction. We can find another such wave
by simply rotating our coordinate system by 90° about the z-axis, to give

E, = E, cos(wt — kz) (2.9)
E,
&:—%aﬁw—h) (2.10)

all other components being zero. If we now add the waves represented by
equations (2.2) and (2.9), giving them different amplitudes and phases, we
obtain an expression for a general wave propagating in the z-direction:
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2.2 Polarisation 11
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Figure 2.1. The electromagnetic spectrum. The diagram shows those parts of the electromag-
netic spectrum that are important in remote sensing, together with the conventional names of
the various regions of the spectrum. The letters (P, L, S, etc.) used to denote parts of the
microwave spectrum are in common use in remote sensing, being standard nomenclature
amongst radar engineers in the USA. Note that this nomenclature varies somewhat in other
countries, particularly in military usage. Note also that various terminologies are in use for the
subdivisions of the infrared (IR) part of the spectrum. That adopted here defines the thermal
infrared band as lying between 3 and 15 um, since this region contains most of the power
emitted by black bodies at terrestrial temperatures.

E. = Ey,.cos(wt —kz — ¢,) (2.11)
E, = Ey, cos(wt — kz — ¢,) (2.12)
E.=0

Note that we do not need to specify the components of the magnetic field B,
since they are defined uniquely by the components of the electric field E. The
two fields are always perpendicular to one another, and to the propagation
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12 Electromagnetic waves in free space

direction, and the ratio of the amplitude of the electric field to that of the
magnetic field is always equal to c.

The values of Ey,, E,, ¢, and ¢, determine the way in which the direction of
the electric field (and hence also of the magnetic field) varies with time. This is
termed the polarisation of the radiation and, as we shall see later, it is important
to consider it in discussing the operation of a remote sensing system.

If the effect of the variables in equations (2.11) and (2.12) is to cause the
electric field vector E to remain pointing in the same direction, the radiation is
said to be plane polarised. This is illustrated in figure 2.2. Clearly, this requires
that the phase difference ¢, — ¢, = 0, w or —m. (We need only consider values
of this phase difference in the range — to +, since a value outside this range
can be expressed as a value within it by adding or subtracting some integral
multiple of 277.) Although in principle the direction of the polarisation could be
specified using either the electric or the magnetic field, it is conventional to use
the electric field, so the example in figure 2.2 would be described as x-polarised.

If, instead of being confined to a fixed direction, the electric field vector
rotates in the xy-plane with a constant amplitude, the radiation is said to be
circularly polarised (figure 2.3). If the sense of the rotation is clockwise when
viewed along the propagation direction the polarisation is called right-hand
circular (RHC), and if anticlockwise it is left-hand circular (LHC). Clearly,
circular polarisation requires that

EOx = EOy

and right-hand polarisation requires that

T
¢y - (Px — 5

For left-hand polarisation,

Figure 2.2. Plane-polarised radiation. The wave is propagating in the z-direction and is
polarised with the electric field parallel to the x-axis and the magnetic field parallel to the
y-axis. The arrows represent the instantaneous magnitudes and directions of the fields.
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2.2 Polarisation 13

y

Figure 2.3. Right-hand circularly polarised radiation. The notation is the same as in figure
2.2, although the magnetic field vectors have been omitted for clarity. They are, as always,
oriented perpendicularly to the electric field vectors.

S|

d)y - ¢x = _E

The only other kind of ‘pure’ polarisation (completely polarised radiation) is
elliptically polarised radiation, in which the path traced by the electric field
vector in the xy-plane is an ellipse. This corresponds to a phase difference of
+7m/2, but different amplitudes for the x and y components of the field. In
general, the polarisation of an electromagnetic wave will be a mixture of these
various types (elliptical polarisation is itself a combination of linear and cir-
cular polarisation), and may also include a randomly polarised component in
which the direction of the electric field vector changes randomly on a time-scale
too short to measure. This kind of radiation is often called unpolarised radia-
tion, although this is a somewhat misleading name since it suggests that the
electric field vector does not point in any direction.

There are a number of notations for specifying the polarisation state of
electromagnetic radiation. One of the most common is the Stokes vector, the
four components of which can be defined in terms of equations (2.11) and
(2.12) as follows:

So = (Egy) + (Eg) (2.13.1)
Si = (Egy) — (Egy) (2.13.2)
Sy = (2Eg, Eyy cos(¢y, — @) (2.13.3)
Sy = (2EqEg, sin(, — ¢,)) (2.13.4)

The angle brackets ( ) in these expressions denote time-averages.
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14 Electromagnetic waves in free space

Examples of some Stokes vectors are given below. In each case, the Stokes
vector has been normalised so that Sy = 1.

r o 0 0] Random polarisation

[1 1 0 0] x-Polarised linear

1 -1 0 0] y-Polarised linear

1 0 1 0] + 45° Linear

nm o -1 0] — 45° Linear

[1 0 0 1] Right-hand circular

1 o0 0 —1] Left-hand circular

[T 06 O 0.8] Right-hand elliptical, Ey,/Ej, = 2

The degree of polarisation of an electromagnetic wave is defined as the fraction
of the total power that is contained in polarised components. It is given in
terms of the components of the Stokes vector by

ST+ S5+ 53
So

It can be verified that in all of the examples above, with the exception of the
first, the degree of polarisation is 1. The total flux density of the radiation is
proportional to Sy, and in fact is given by

So

F=
27,

(2.14)

The Stokes components of two electromagnetic waves of the same fre-
quency, travelling in the same direction, can be added provided that the two
waves are incoherent (i.e. that there is a randomly changing phase difference
between them). This allows us to ‘decompose’ a Stokes vector into its polarised
components, together with a randomly polarised component if necessary. If a
remote sensing system responds only to one polarisation state (this is a com-
mon situation for microwave systems), we will need to consider the component
of the incident radiation that has that polarisation state. For example, ran-
domly polarised radiation can be decomposed into incoherent x- and y-
polarised components:

10 0 m:%u 1 0 m+%u ~1 0 0]

so that an instrument capable of detecting only y-polarised radiation will
collect half of the power available from a randomly polarised wave. Most
natural sources of radiation are randomly polarised, although, as we shall
see, scattering and reflection may change the state of polarisation.

2.3 Spectra and the Fourier transform

Up to this point we have said nothing about the frequency (or wavelength) of
the radiation, other than that electromagnetic radiation may, in principle, have
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2.3 Spectra and the Fourier transform 15

any frequency we wish. It will often happen, however, that we wish to describe
a particular radiation field in which a number (possibly a continuous distribu-
tion) of frequencies is present. This can be done by specifying the complete
waveform, which obviously contains all the necessary information, or the spec-
trum of the radiation — the amplitudes of the various frequency components
that are present in the waveform. These two methods are equivalent, and it is
important to know how to convert from one description to another. The con-
version is achieved using the Fourier transform, and since this is of great
importance in many aspects of remote sensing it is worth deriving the theory.

It will be convenient to use the complex exponential notation to describe
sinusoidal or cosinusoidal components, since it greatly simplifies the following
analysis. Using this notation, we express a variation having angular frequency
w and amplitude 4 as

Aexp (iwt) (2.15)
where i is the square root of —1 and ‘exp’ is the exponential function; that is,
exp(x) = e*

By allowing A4 to take complex values, and adopting the convention that it is
the real part of equation (2.15) that corresponds to the variation of the physical
quantity, we can represent both sinusoidal and cosinusoidal components. We
can see this by writing 4 in terms of its real and imaginary parts, expanding
exp(iwt) as cos(wt) + i sin(wt), and taking the real part of equation (2.15):

Re((Re(A) + iIm(A4))(cos(wt) + i sin(wt)) = Re(A4) cos(wt) — Im(A4) sin(wt)

Let us suppose that some time-varying quantity (e.g. the electric field ampli-
tude at a given location as an electromagnetic wave passes through it) is written
as a function of time f{¢), and that it is also possible to express it as the sum of
components of various angular frequencies w. If the distribution of frequencies
is continuous, the amount of each frequency present can be expressed by a
density function a(w), such that the total amplitude of the components having
frequencies in the range w to w + dw (dw being very small) is a(w) dw. Thus,
the contribution from this range of frequencies is written as

a(w) dow exp(iwt)

and the sum of the contributions from all frequencies can be obtained by
integrating this expression:

e e]

f() = J a(w) exp(iwt) dw (2.16)

—00

So far, this is merely an assertion. We have neither proved that the distribution
a(w) uniquely represents f{¢), nor shown how to find a(w) given f{¢). It is beyond
our scope to find a rigorous answer to the former problem, so we shall content
ourselves with answering the latter.
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16 Electromagnetic waves in free space

If we multiply equation (2.16) by exp(iw't), where ' is an arbitrary angular
frequency, we obtain

f(exp(io't) = J a(w) exp(i[w + »'f) do

Next, we integrate this with respect to ¢, giving

e e]

J f() exp(io't) dt = J [ a(w) exp(i[w + o']t) do dt

o]

= J a(w) J exp(i[w + ') do dt

—00 —00

Now
o
J exp(iat) dt

is a function of « which is zero everywhere but at @ = 0, where it is infinite. The
area underneath a graph of this function is, however, finite, and has a value of
27r. This can be written as

J exp(iat) dt = 2 ()
where §(«) is the Dirac delta-function. Thus, we have
J f(t) exp(io't) = 2ma(—w)

which can be rewritten, by changing the symbols and rearranging the expres-
sion, as

a(w) =

21 J () exp(—iwi) dt (2.17)

This is very similar to equation (2.16) and shows that, apart from a change of
sign and scale, a(w) is obtained from f{r) in exactly the same way as f{¢) is
obtained from a(w). The integral transforms defined by equations (2.16) and

(2.17) are called Fourier transforms, although we should note that some
authors increase the symmetry between (2.16) and (2.17) still further by writing
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2.3 Spectra and the Fourier transform 17

o0

f)= «/12_71 J a(w) exp(iw?) do

—00

oo

1
a(w) Nir J f(0) exp(—iw?) dt
—00

Let us apply the Fourier transform to a practical example. Suppose we have
a waveform f{(¢) that consists of a single angular frequency w,, which is turned
on for a finite time 7 (figure 2.4). What is its spectrum a(w)? We might think
that since we only used one frequency to construct f{(7), the spectrum would
consist of a single spike or delta-function at that frequency. However, this
cannot be correct since the spectrum a(w) has to contain all the information
contained by f{7), including the fact that the waveform drops abruptly to zero
for |¢t| > T /2. Using equation (2.17), then, we find that

T/2
1
a(lw) = = J cos(wy?) exp(—iwkt) dt
—T)2
sin(wy — w)T/2 . sin(wy + w)T'/2
271 wy — w wy +

This is evidently the sum of two functions, each of the form (sin x)/x, centred
at frequencies wy and —w,. The function (sin x)/x, often called sinc(x), is shown
in figure 2.5. (Note that some authors define sinc(x) to be (sin 7x)/(wx)).

Thus, the complete spectrum of the waveform whose time dependence was
shown in figure 2.4 is shown by figure 2.6. It can be seen that the delta-func-
tions that we initially expected at w = + w, have been spread out over a range
28w in frequency, where

2
~ 2.1
dw T (2.18)

or 8f ~ 1/T. This is in fact a general result of fundamental importance: in
order to represent a waveform of duration &z, we need a range of frequencies of
at least £1/4¢. It is a form of ‘uncertainty principle’. Defining exactly what is

fn 4

\ /\ /T\ /X 1.
_T/z\] UT/Z

Figure 2.4. A truncated cosine wave. The Fourier transform of this function is shown in
figure 2.6.
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18 Electromagnetic waves in free space

N

Figure 2.5. The function sinc(x), defined as (sin x)/x.

usefully meant by ‘length’ and ‘range’ is not always obvious, so we will leave
equation (2.18) in its approximate form, although a more exact formulation of
the result is possible.

A related result — which is, however, quite exact — is the Nyquist sampling
theorem. This states that if a signal is to be sampled at regular intervals, the
sampling frequency must exceed some minimum value if it is to be possible to
reconstruct the original signal unambiguously from the samples. This fre-
quency is the Nyquist frequency, and it is twice the bandwidth of the signal.
The bandwidth is defined as the range of frequencies f over which the signal
spectrum is non-zero. If the signal is undersampled — that is, sampled at a rate
below the Nyquist frequency — aliases are introduced which, amongst other
undesirable effects, degrade the signal-to-noise ratio. The practical implications
of the Nyquist theorem are many, but it clearly finds an important application
in the design of electronic systems in which a signal is first filtered to define a
bandwidth, and then sampled at regular intervals.

2.4 The Doppler effect

If a source of electromagnetic radiation of frequency fis in motion with respect
to an observer (e.g. a sensor), the observer will in general detect the radiation at

a(w) 4

—wy wq w

Figure 2.6. The Fourier transform of the function shown in figure 2.4.
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2.5 Describing angular distributions of radiation 19

a different frequency f'. If the source is approaching the observer, or equiva-
lently if the observer is approaching the source, f* will be greater than f, and
conversely. This is known as the Doppler effect, and is analogous to the similar
(and familiar) effect observed with sound waves. However, whereas the Doppler
effect for sound is not the same for the source approaching the observer and for
the observer approaching the source, the effect is symmetrical in this manner for
electromagnetic radiation in free space. The result has to be derived using
Einstein’s Special Theory of Relativity, so it will merely be stated here.

If the source S approaches the observer O with a velocity v directed at an
angle 6 to the line of sight, as shown in figure 2.7, the Doppler shift is given by

2

12

f ?
f : ~wvcosd (2.19)

¢

where ¢ is the speed of light. However, in all cases that will concern us, the
relative speed v will be very much smaller than the speed of light, in which case
a very good approximation to equation (2.19) is given by

f | 4 v cos 6

/ ¢
For example, if a satellite is travelling away from an observer on the Earth with
a speed of 7kms ™" at an angle of 10° to the line of sight (thus, 6 = 170°), and it
emits a signal with a frequency of exactly 5 GHz, the received frequency will be
4.999885 GHz. In other words, the frequency has been shifted downwards by
115kHz. The error in calculating this shift using the approximate equation
(2.20) is only about 1 Hz and may be ignored.

Although it is small, a consideration of the Doppler effect is important for

some radar systems, particularly the synthetic aperture radar systems discussed
in chapter 9.

(2.20)

2.5 Describing angular distributions of radiation

We have already seen how to describe electromagnetic radiation that contains
a range of frequencies or a range of polarisations. Up to this point, however,
we have considered only collimated radiation: that is, radiation travelling in a

Figure 2.7. The Doppler effect. The source of electromagnetic radiation is located at S,
travelling with velocity v. The observer is located at O.
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20 Electromagnetic waves in free space

single direction. It is clear that we will also need to be able to describe radiation
distributed over a range of directions in space. The radiometric quantities
introduced in this section are also discussed by Curran (1985).

Let us begin by considering a plane surface that is illuminated by radiation
from a variety of directions. To specify a particular direction of incident radia-
tion we will need two angles: 6, the angle between the propagation direction
and the normal to the surface element; and ¢, the azimuthal angle, measured
around the normal in the plane of the surface (see figure 2.8). Now we consider
an element dA of this surface, and radiation incident from the range of direc-
tions between 6 and 6 + d6 and between ¢ and ¢ + d¢ (figure 2.9). The solid
angle (unit: steradian; symbol: sr) defined by this range of directions is

dQ = sin 6d0 de (2.21)

and it is clear that the power incident on the element dA4 from this range of
directions must be proportional to d4 and dQ as well as to a term that defines
the strength of the radiation. This relationship can be expressed as

dP =L cos 0dAdQ (2.22)

where dP is the contribution to the power incident on the area dA from solid
angle dQ in the direction (0, ¢), and L is the radiance of the incident radiation
in that direction. From this definition, it follows that the SI unit of radiance is
Wm sl

The inclusion of the factor cos 6 in equation (2.22) seems perverse at first
sight. However, it gives the radiance the valuable property that, if the medium
through which the radiation propagates does not scatter or absorb and has a
constant refractive index (and these conditions are obviously all met if we are
still considering radiation in free space), then the radiance is constant along
any ray. The concept of radiance is of prime importance in considering mea-
surements made by optical and near-infrared remote sensing systems, discussed
in chapter 6.

Surface normal

Incident ray
0 g

[0

Surface

Figure 2.8. Definition of the angles 6 and ¢ to describe the angular distribution of radiation.
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2.5 Describing angular distributions of radiation 21

Incident radiation

Solid angle d€2

Figure 2.9. Geometrical construction to explain the concept of radiance.

The irradiance E at the surface is defined as the total incident power per unit
area, and its SI unit is W m 2. It is found by integrating equation (2.22) over all
the directions for which 6 < 7/2; namely, the hemisphere of directions from
which the surface can be illuminated:

/2 2m
E = J J Lincident cos 0 dQ (223)
0=0 ¢=0

Although the radiance may be a function of direction, the irradiance clearly
cannot be.

We can use the same ideas to describe radiation emitted or reflected from a
surface. Since the concept of radiance describes radiation in space, the same
terminology will suffice for both incoming and outgoing radiation. All we need
to do is to ‘label’ the radiation so that we know in which direction it is pro-
pagating, and terms such as ‘upwelling’ and ‘downwelling’ radiation are fre-
quently used for this purpose. The outgoing analogue of irradiance is termed
radiant exitance, and given the symbol M:

/2 2w
M = J J Lyigoing €08 68 dQ (2.24)
6=0 ¢=0

For isotropic radiation, the radiance is independent of direction. In this case,
the relationship between the radiance and the exitance is given by

n/2 2w
M=L J J cos 0 dQ2 =nlL (2.25)
0=0 ¢=0
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22 Electromagnetic waves in free space

2.6 Thermal radiation

Thermal radiation is emitted by all objects above absolute zero (—273.15°C —
see box) and is, at first or second hand, the radiation that is detected by the
great majority of passive remote sensing systems.

THE ABSOLUTE TEMPERATURE SCALE

In describing thermal radiation, it is convenient to use the absolute scale
in which temperatures are measured in Kelvin (K). The relationship
between a temperature 7' in Kelvin and a temperature ¢ in degrees
Celsius is

T=1t+273.15—

In general, a hot object (by which, for the present, we mean one that is not at
absolute zero) will distribute its emission over a range of wavelengths in a
continuous spectrum. To describe this radiation we can use the same radio-
metric quantities that were defined in section 2.5, but we need to modify the
definitions to include the variation with wavelength or frequency. This is done
by defining the spectral radiance L; such that the radiance AL contained in a
small range of wavelengths A/ is given by

AL =L; A (2.26)
In other words, L, is just the differential of L with respect to A, or more strictly
the absolute value (modulus) of this differential:

oL
oA

L= ’ (2.27)

"m~!, although the

It is clear that the SI unit of spectral radiance is Wm ™ sr™
unit Wm™sr~! um™"! is also commonly used.

The spectral radiance can also be defined in terms of the frequency f:
oL

f

so that its unit is Wm™>sr~! Hz !, and the relationship between the definitions
(2.27) and (2.28) is therefore given by

2_‘%_

Ly |di| 2

L= ‘ (2.28)

| &

_r
= (2.29)

[\S)

where c is the speed of light.

All of the radiometric quantities defined in section 2.5, not just the radiance,
can similarly be defined spectrally.

If we make a closed cavity with opaque walls, and hold the cavity at an
absolute temperature 7, the electromagnetic radiation inside it is known as
black-body radiation. The spectral radiance of this radiation was calculated
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2.6 Thermal radiation 23

by Planck, using quantum mechanics (see e.g. Longair, 1984), during the early
years of the twentieth century. It is

2hf?
;= m (2.30)
which may also be expressed, using equation (2.29), as
2he?
L= 23T 1) (2.31)

In these equations, / is the Planck constant and k is the Boltzmann constant.
Equation (2.31) is plotted in figure 2.10 for two different temperatures. Note
the steep rise at short wavelengths, and the long tail at long wavelengths.

The radiation inside a closed cavity may not seem particularly interesting or
relevant, but we may observe it by making a small hole in the cavity and letting
some of it escape. In this case, equations (2.30) or (2.31) describe the radiation
emerging from the hole, and from any black body (perfect emitter of thermal
radiation) at temperature 7.

At sufficiently long wavelengths, equation (2.30) can be approximated as

2ka 2T

Lf\/ =
‘f 2 52

(2.32)

This is called the Rayleigh—Jeans approximation, and corresponds to the right-
hand half of figure 2.10 where the graphs can be approximated as straight lines
with a slope of —2. The condition for this approximation to be valid is

he

— 1
T <

or equivalently

Loga

Figure 2.10. Black-body radiation according to the Planck law. The graphs show log;, L; in
units of Wm ™ sr™! plotted against log,, 4 in metres.
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24 Electromagnetic waves in free space

A
kT

For T = 280K, this gives f <« 6000 GHz or A > 50 um, so the approximation
is valid for microwave and radio frequencies for objects at typical terrestrial
temperatures.

We can integrate the Planck formula (either equation (2.30) or (2.31), it does
not matter which) to calculate the total radiance of black-body radiation over
all wavelengths:

<1

L= (2.33)

T 27tk

L,di="2"_
J “ 156213
0

Since the radiation is isotropic, the total radiant exitance M is found, using
equation (2.25), to be

2k
15¢2h3

This is normally written more compactly as

M =nl =

M=oT* (2.34)

where o =27k* /15 ~ 5.67 x 10Wm2K™ is called the Stefan—
Boltzmann constant, and equation (2.34) is called Stefan’s law. It shows how
much power is emitted by a black body at temperature 7, integrated over all
wavelengths. If we want to know how this power is distributed in wavelength,
we can of course use equation (2.30) directly, but it may be sufficient merely to
know the wavelength /., at which L; reaches a maximum. This is found by
differentiating equation (2.30), which shows that

A
Amax = T (2.35)

where A is a constant whose value is about 2.898 x 107> K m. Equation (2.35)
is called Wien’s law, or Wien’s displacement law. For example, the Sun is a
good approximation to a black body at a temperature of 5800 K, so the peak
spectral radiance occurs at Ay, &~ 0.50 um, in the middle of the visible spec-
trum — where we expect it to be. If, on the other hand, we consider a black body
at a temperature of 280 K, which is fairly typical of temperatures on the Earth’s
surface, we find 4., ~ 10.3 um, in the thermal infrared region of the electro-
magnetic spectrum.

We may also occasionally need to calculate the radiance or radiant exitance
of a black body over a finite range of wavelengths. This can be simplified a little
by integrating with respect to a dimensionless variable. Specifically, we can put

J.MA di=oTH(f(x1) = f(x2)) (2.36)
A

Downloaded from Cambridge Books Online by IP 150.135.210.31 on Fri Oct 24 18:32:57 BST 2014.
http://dx.doi.org/10.1017/CB09780511812903.003
Cambridge Books Online © Cambridge University Press, 2014




2.6 Thermal radiation 25

where the dimensionless variables x; and x, are defined by
- he - - he
VLT 27 kT
and the function f{(x) is defined by

X
2dz

f(x) = SJB - (2.37)

0

This integral cannot be evaluated analytically, although numerical integration
using computer programs such as Mathematica, Maple, or Matlab is straight-
forward. In cases where no such program is available, the function f{x) is
tabulated in table 2.1, and the box (see e.g. Houghton, 1986) shows how the
function may be approximated.

We remarked earlier that a small hole in the wall of a cavity behaves as a
black body. This is not a particularly plausible model for real materials, so we
introduce the idea of the emissivity ¢ to relate the actual radiance of a body at
temperature 7 to the black-body value. (Note that emissivity and dielectric
constant are both conventionally denoted by the symbol epsilon, which has
potential for confusion. The usage is too well established, however, for us to
introduce a different notation, and we will rely on the context, or an explicit
statement, to differentiate between them.) The emissivity is often dependent on

Table 2.1. Integral of the Planck distribution function
The table gives values of the function f(x) defined in the text.

x J () x J(x)
0 0 1.4 0.08040
0.10 0.00005 1.6 0.11023
0.12 0.00009 1.8 0.14402
0.14 0.00013 2.0 0.18115
0.16 0.00020 2.5 0.28403
0.18 0.00028 3.0 0.39302
0.20 0.00038 3.5 0.49938
0.25 0.00073 4.0 0.59703
0.30 0.00124 4.5 0.68251
0.35 0.00193 5.0 0.75453
0.40 0.00282 6.0 0.86016
0.45 0.00394 7.0 0.92443
0.50 0.00529 8.0 0.96084
0.60 0.00879 9.0 0.98039
0.70 0.01341 10.0 0.99045
0.80 0.01923 12.0 0.99788
0.90 0.02629 14.0 0.99956
1.0 0.03462 16.0 0.99991
1.2 0.05506 18.0 0.99998

20.0 1.00000
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26 Electromagnetic waves in free space

APPROXIMATIONS TO THE PLANCK INTEGRAL

The function defined by equation (2.37) can be expanded as

o 3 6x 6
(x)_l——Z ( —2+$+%>

although for small values of x the convergence is rather slow. For x > 3,
the first three terms are sufficient to give five significant figures in the
value of 1 — f(x). For x < 0.5, the power series

15 xt X x
f(x>”—(?‘§+@‘m)

gives an accuracy of five significant figures.

wavelength, so in general we should write it as (1), and we can define it
through

L/l = 8(;”)Ll,p (238)

where we have now written L; , for the black-body radiance defined by equa-
tion (2.31) (the ‘p’ stands for ‘Planck’). A simple thermodynamic argument
shows that a body which is a good emitter (high ¢) must also be a good
absorber of radiation — in fact the two factors must be equal (this is
Kirchhoff’s law of radiation). We can see this quite easily by realising that
any body at temperature 7 must be in equilibrium with black-body radiation
whose spectrum corresponds to the same temperature. If, say, the body
absorbs better than it emits, it will heat up, and thus cannot in fact be at
equilibrium. Thus, the reflectivity is given by 1 — ¢. It also follows from this
argument that the emissivity must lie between 0 and 1. The factors that deter-
mine emissivity are discussed in more detail in sections 3.5.2 and 3.5.3.

It is often convenient, especially when discussing passive microwave systems
(chapter 7), to define the brightness temperature of a body that is emitting
thermal radiation. This is the temperature of the equivalent black body that
would give the same radiance at the wavelength under consideration. By com-
bining equations (2.31) and (2.38), we can see that at wavelength A, a body with
temperature 7 and emissivity ¢ has a brightness temperature 7}, that is given by

2he? 2he?

8;b5(ehc/ikT -1 - /«LS(ehc/}hka —1)

The solution of this equation for T}, is

he

Tb = 1
/’{k 1n<1 _i_g(ell(?/ﬂkT _ 1))

(2.39)
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2.6 Thermal radiation 27

but at sufficiently long wavelengths (high frequencies) this can be approxi-
mated very simply, using the Rayleigh—Jeans approximation, as

T, =eT (2.40)

We saw earlier that a black body at a typical terrestrial temperature of 280 K
will radiate maximally at a wavelength of 10.3 um. How well does it radiate at
other wavelengths? Specifically, let us calculate the fraction of the total radiant
exitance that is emitted in four wavelength ranges: 0.5-0.6 um, 1.55-1.75 um,
10.5-12.5um and 1.52-1.56cm. These have been chosen to be typical of
remote sensing measurements in the optical, near-infrared, thermal infrared
and passive microwave regions, respectively. Using the methods described
from equation (2.36) onwards, we find that these fractions are approximately
6x 1073, 7x 1071, 0.12 and 1 x 107", respectively. This illustrates the very
rapid fall in the Planck function at shorter wavelengths and the much slower
decline at longer wavelengths. It also shows that, while objects at normal
terrestrial temperatures do not emit thermal radiation in the form of visible
light (which is a fact of everyday experience), small but potentially measurable
quantities of radiation are emitted in the microwave region. In fact, it is pos-
sible to build receivers sensitive enough to detect this microwave radiation, and
this forms the basis of the passive microwave radiometry techniques that will
be discussed in chapter 7.

2.6.1 Characteristics of solar radiation

By way of illustration, we will apply some of the results of sections 2.5 and 2.6
to characterise radiation from the Sun. To a fairly good approximation the Sun
can be taken to be a grey body (i.e. it has a constant emissivity over the range of
wavelengths at which emission is significant) with an effective temperature 7 of
about 5800 K and an emissivity of 0.99. It can be assumed to be a sphere of
radius r = 6.96 x 10° m located a distance D = 1.50 x 10" m from the Earth.

From equations (2.34) and (2.38), we can write the Sun’s radiant exitance,
integrated over all wavelengths, as

M =eoT* =6.35x 10" Wm™

The total power radiated by the Sun is obtained by multiplying this by the
Sun’s surface area:

P =4dn?eoT* =3.87 x 10°°W

By considering a sphere of radius D centred on the Sun, we can see that the
irradiance at the Earth (but above the Earth’s atmosphere, so we that we do
not need to consider atmospheric absorption) is given by

P
E=-—->=137x10Wm™
4nD

This value is often called the mean exoatmospheric irradiance. We can calculate
the corresponding exoatmospheric radiance L by considering the range of
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28 Electromagnetic waves in free space

directions over which this radiation is distributed. Seen from a distance D, the
Sun subtends a solid angle

2

rA=""_
DZ
which is much less than 1, so a sufficiently accurate estimate is given by
E T
= =2 202% 107 Wm s
AQ T

This radiance is confined to the range AQ of solid angle. Outside this range, the
radiance is of course zero.

We can also calculate the exoatmospheric radiance spectrally, taking equa-
tion (2.31) as our starting point and following the same procedure. We find
that

B 2ehc?
- lS(elzc*/ikT —1)

A

which of course is just the Planck formula for the radiance, modified by equa-
tion (2.37) to take account of the emissivity. For example, at a wavelength
of 0.5um this gives L, =2.65x 10°Wm™2sr'm™'. The corresponding
spectral irradiance is obtained by multiplying this by AQ to give E;, =
1.79 x 10°Wm ™2 m™", which can also be expressed in less standard but more

common units as 1.79 x 10° Wm ™2 um ™' or even as 179 mW cm 2 um ™.

2.7 Diffraction

We conclude this review of the propagation of electromagnetic radiation in free
space by discussing diffraction. Diffraction can be roughly defined as the
changes that occur to the direction of electromagnetic radiation when it
encounters an obstructing obstacle of some kind. It could therefore be argued
that, since the radiation is interacting with matter (the obstacle), the phenom-
enon should be discussed in chapter 3. However, it is more convenient to treat
it here since (a) we will assume that, until the radiation encounters the obstacle
and after it has left it, it is propagating in free space, and (b) our approach will
build upon the discussion of Fourier transforms developed in section 2.3. The
treatment presented here, which will lead to results that are of fundamental
importance in understanding the spatial resolution of remote sensing systems,
will be very brief. Much fuller treatments can be found in any textbook on
optics: for example, Hecht (1987) or Lipson et al. (1995).

We shall begin by considering plane parallel radiation (i.e. radiation travel-
ling in a single direction) incident on a very long slit, of width w, in an infinite
opaque screen. The slit has its long axis parallel to the x-axis of a Cartesian
coordinate system, and the centre of the slit is located at the origin of this
coordinate system. We wish to determine the amplitude of the electric field at
the point P shown in figure 2.11.
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2.7 Diffraction 29

Incident E>
radiation

—w/2

Diffracting
aperture

Figure 2.11. Geometry of Fraunhofer diffraction at a slit.

If the distance z is sufficiently large (we will discuss later how large it needs
to be), the rays OP and 4P may be regarded as parallel, and 4P is shorter than
OP by y sin 6. The phase difference between the two rays is thus ky sin 6, where
k is the wavenumber of the radiation. If this condition, that the phase differ-
ence in a given direction varies linearly with the position in the slit, is met, what
we are describing is termed Fraunhofer diffraction. The complex amplitude at P
contributed by an element of the slit of width dy, located at A, is thus propor-
tional to

exp(iky sin 0) dy

(We are ignoring the reduction of amplitude with distance due to geometrical
spreading, as well as one or two other effects.) The total amplitude at P is
found by integrating this expression over the entire slit:

w/2

a(f) = J exp(iky sin 0) dy
—w/2

This expression looks very similar to the Fourier transform defined in equation
(2.16). We can make the correspondence exact by introducing the idea of an
amplitude transmittance function f(y) for the plane of the screen, which defines
the fraction of the incident amplitude that is transmitted. For the slit we have
been discussing, f(y) =1 for —w/2 < y < w/2, and 0 everywhere else. Using
f(y) to characterise any general one-dimensional aperture distribution, the
expression for the complex amplitude in the direction 6 becomes

a(9) = J f(y) exp(iky sin 0) dy (2.41)

—00

which is clearly a Fourier transform, though it is often called the Fraunhofer
diffraction integral.
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30 Electromagnetic waves in free space

In section 2.3 we identified time ¢ and angular frequency w as a pair of
conjugate variables related by the Fourier transform; here, the corresponding
variables are y and (k sin 6). Again, a form of uncertainty principle applies.
Evaluating the integral (2.41) for our slit of width a, we find that

a() o sinc (l%me)

This is a function that has the same shape as figure 2.5, and it first falls to zero
when sin 6 = +2n/kw = £ A/w. If w> 4, sin 6§ will be much less than 1, so
that we can put sin 6 &~ 6, and hence

30 ~ 4 (2.42)
w
This is the result that corresponds to equation (2.18), and it shows that if a
beam of plane parallel radiation of wavelength / passes through an aperture of
width w, it will spread into a diverging beam whose angular width will be of the
order of A/w radians.

Equation (2.41) applies to one-dimensional diffraction; namely, to the case
in which the amplitude transmission function depends only on y. For the two-
dimensional case in which the amplitude transmission function must be written
as f(x, y), the diffraction integral becomes

[o Sl ¢]

a0y, 0,) = J J f(x,y) exp(ikx sin 6,) exp(iky sin 6,) dx dy (2.43)

—00 —O0

This double integral is rather hard to solve in general, although there are two
special cases that should be mentioned. The first is when f{x, y) can be fac-
torised into two independent parts: f(x, y) = g(x)i(y). The double integral can
then be factorised into the product of two single integrals of the form of
equation (2.41). This approach allows us to calculate, for example, the diffrac-
tion pattern of rectangular apertures. The second special case is when the
amplitude transmission function has circular symmetry. In this case, it is
simpler to use polar coordinates. We shall need only one result for general
reference, and that is the diffraction pattern of a uniform circular aperture of
diameter D. The amplitude of the diffracted wave in this case is given by

kD sin 0,
A
a(0,) X —p (2.44)

kD sin 0,
2

where Ji(x) is the first-order Bessel function and 6, is the radial angle. The
function in equation (2.43) is sketched in figure 2.12. Ji(x) first falls to zero
when x = 3.832, so the first zero occurs when sin (6,) = 7.66/kD = 1.224/D.
Now we return to the comment we made regarding figure 2.11, that the
distance z must be large enough for the two rays OP and AP to be regarded
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Figure 2.12. The Fraunhofer diffraction pattern of a circular aperture of diameter D. 6, is the
radial angle (i.e. the angle from the normal to the plane of the aperture).

as parallel. How large is this? We assume conventionally that the Fraunhofer
description is valid if the phase differences computed by its use are accurate to
within /2 radians. Inspection of figure 2.11 shows that this is equivalent to
putting

AQ—0Q<§

and since OA takes a maximum value of w/2 we may use Pythagoras’ theorem
to derive

<W)2+ ) A
- zm =< =
2 4

Now if w/2 « z, we can use the binomial approximation to simplify this con-
dition to

8z 4
or

WZ

2> e =zp (2.45)
The distance zyis often called the Fresnel distance, after A. Fresnel who made
many important discoveries in physical optics in the early nineteenth century,
and if the condition (2.44) is not satisfied a more rigorous form of diffraction
theory, known as Fresnel diffraction, must be used. The region in which z < zp
is often called the near field, and z > z is the far field.

As was mentioned earlier, one important practical implication of diffrac-
tion is that it limits the spatial resolution of a remote sensing system.
Without developing a rigorous theory for this phenomenon, we can see the
principles involved by considering a very simple system (figure 2.13) consist-
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32 Electromagnetic waves in free space

Incident light

[

‘ Detector
\

Lens

Figure 2.13. Ray diagram for a simple model of a remote sensing system.

ing of a lens arranged so that it focusses plane parallel light onto an extre-
mely small detector. Figure 2.13 is a ray diagram, so it includes the phenom-
ena of geometric optics but not the effects of diffraction. As it stands, the
diagram implies that all of the radiation that reaches the detector was ori-
ginally travelling in the same direction; namely, that it subtended an angular
width of zero. In fact, a range of incident directions will contribute to the
signal that reaches the detector. By imagining that the light is propagating in
the opposite direction to that shown in the figure, from the detector to the
lens, we can see that the effect of the finite aperture represented by the lens
will be to spread the outgoing light into a cone with an angular width of the
order of 4/D, where D is the diameter of the lens. Thus, in general, we expect
that diffraction will limit the angular resolution of any remote sensing system
to ~ A/D, where D is the width of the lens, antenna, mirror, or whatever is at
the ‘front end” of the system to define the spatial extent of the wavefront
captured by the system. Other parts of the system may further degrade the
resolution, of course.

We can illustrate this calculation with two examples. The first is a space-
borne optical sensor operating at a wavelength of 0.5um and with a lens
diameter of 5 cm. Using the formula A/D we find that the angular resolution
is limited to about 10~ radians (about 2 seconds of arc), which corresponds to
a spatial resolution of about 10 m at a distance of 1000km. The Fresnel
distance (equation (2.45)) is 2.5km, so the simple A/D calculation is valid.
This is in fact typical of the spatial resolution of many spaceborne optical
remote sensing systems. The second example is a passive microwave radiometer
operating at a wavelength of 3 cm and with an antenna diameter of 1 m. In this
case, the angular resolution is about 0.03 radians (1.7 degrees), corresponding
to a spatial resolution of 30 km at a distance of 1000 km (the Fresnel distance is
17m). Thus, we can see why the passive microwave systems to be discussed in
chapter 7 have very much poorer angular resolution than the optical and
infrared systems described in chapter 6.

Finally, it should be noted that some microwave remote sensing systems
have been designed to circumvent the diffraction limit. The methods by
which this is possible are discussed in chapters 8 and 9.

PROBLEMS

1. The electric field of an electromagnetic wave in free space is given by
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Problems 33

E. =0

E, = E cos(wt — kx)

E. = 2FE cos(wt — kx)
where E = 1kVm ™. Find the corresponding magnetic field and the flux den-
sity of the radiation.

. When radiation having Stokes vector S =[Sy, S, S5, S3] is incident on an
antenna that receives only linearly x-polarised radiation, the detected power
is proportional to S- P where P =1, 1, 0, 0]. Show how the detected power
varies with the polarisation state for radiation of a given flux density.

. Prove equation (2.32).

. (For mathematical enthusiasts.) Show that the Fourier transform of the

Gaussian function
‘ (1 — 1,)
1) = _——
S0 exp( o

is proportional to

and interpret this result.

. Calculate the ratio of the spectral radiances of black bodies at 300 K and
6000K at (a) 1 GHz, (b) 1000 GHz, (c¢) 1 um and (d) 0.1 pm.
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